K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

c)  \(x+y+9=xy-7\)

=> \(x+y+16=xy=>x+16=xy-y=y.\left(x-1\right)\)

\(=>y=\frac{x+16}{x-1}\) (x khác 1)

Mà do y thuộc Z => \(\frac{x+16}{x-1}\in Z=>x+16⋮x-1=>\left(x-1\right)+17⋮x-1=>x-1\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

\(=>x\in\left\{0;2;-16;18\right\}\) (Thỏa mãn do khác 1)

*) Nếu x=0 => 16+y=0=> y=-16. 

*) Nếu x=2 => 18+y=2y=> y=18

*) Nếu x=-16 => y=-16y => y=0

*) Nếu x=18 => y=2

Vậy (x,y)=.....

5 tháng 3 2017

sao ko có lời giải 2 câu trên ak tui cần 2 câu trên

18 tháng 12 2023

loading...  loading...  

18 tháng 12 2023

chuyển qua viết tay rồi à (:

 

c: =>x+y-xy=-16

=>x+y-xy-1=-17

=>x(1-y)-(1-y)=-17

=>(1-y)(x-1)=-17

=>(x-1;y-1)=17

=>(x-1;y-1) thuộc {(1;17); (17;1); (-1;-17); (-17;-1)}

=>(x,y) thuộc {(2;18); (18;2); (0;-16); (-16;0)}

b: Tham khảo:

loading...

24 tháng 2 2022

-Câu hỏi?

24 tháng 2 2022

???? giúp dc ko :>

20 tháng 7 2023

@ Nguyễn Thị Thương Hoài

Giúp em với ạ.

 

20 tháng 7 2023

Tìm \(x\); y nguyên hay thế nào em 

22 tháng 4 2021

Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10

                    2009200910 = (10001.2009)10

Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10

Vậy 200920 < 2009200910

Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005Bài...
Đọc tiếp

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

làm ơn giúp mình 

1

10:

Vì n là số lẻ nên n=2k-1

Số số hạng là (2k-1-1):2+1=k(số)

Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương

11: 

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc {1;5;13;65}

=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)