K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

x=10,y=0 vì 102+2.10.0=100

25 tháng 1 2016

tic nha tlinh ban tot 

Huỳnh Phan Yến Như toàn nói linh tinh trả lời dễ thì lm đi

16 tháng 12 2015

Ta có: x.2+2.x.y=100

=> 2x(y+1)=100

=> x(y+1)=50 

=> x;y+1 thuộc Ư(50)

Ư(50)={-50;-25;5;-2;-1;1;2;5;25;50}

Tự tìm

12 tháng 8 2016

\(x^2+2y=11\)

<=> \(x^2=11-2y\)

điều kiện \(11-2y\ge0\)=> y<=5,5

=> \(x=\pm\sqrt{11-2y}\)

=> ta chỉ cần tìm những giá trị y sao 11-2y là số chình phương

đáng lẽ đề này phải là thuộc N chứ

13 tháng 12 2019

a) 2xy-6x+y=13

<=>2x(y-3)+(y-3)=10

<=>(y-3)(2x+1)=10

=>y-3 và 2x+1 thuộc Ư(10)

=>Ư(10)={-1;1;-2;2;-5;5;-10;10}

Vì 2x+1 luôn lẻ

=>2x+1={-1;1;-5;5}

Ta có bảng sau:

2x+1-11-55
y-3-1010-22
x-10-32
y-71315
NXloạitmloạitm

Vậy các cặp gt (x;y) thỏa mãn là:

(0;13); (2;5)

b) 2xy+2y-x=16

<=>x(2y-1)+(2y-1)=15

<=>(2y-1)(x+1)=15

=>2y-1 và x+1 thuộc Ư(15)

=>Ư(15)={-1;1;-3;3;-5;5;-15;15}

Ta có bảng sau:

x+1-11-33-55-1515
2y-1-1515-55-33-11
x-20-42-64-1614
y-78-23-1201
NXloạitmloạitmloạitmloạitm

Vậy các cặp gt (x;y) thỏa mãn là:

(0;8); (2;3); (4;2); (14;1)

29 tháng 5 2016

Ta thấy 11x⋮6 nên x⋮6.

Đặt x=6k (k nguyên).Thay vào (1) và rút gọn ta đượ c: 11k+3y=20

Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đói nhỏ ( là y ) theo k ta được :

   y = 20 -11k3

Tách guyên giá trị nguyên của biểu thức này :

   y = 7 - 4k +k - 13

Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó :

= 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6

Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng.

 Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức :

{=18t+6y=3−11t vớ i t là số nguyên tùy ý

 mk nha các bạn !!!

29 tháng 5 2016

Thành lập hội VICTOR_TÊN NHA

2 tháng 9 2020

Ta có : \(x^2+y^2=4< =>x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(< =>4\ge\frac{\left(x+y\right)^2}{2}< =>\left(x+y\right)^2\le4.2=8< =>x+y\le\sqrt{8}\)

Hay \(x+y\le\sqrt{8}\)

Dấu = xảy ra khi và chỉ khi \(x=y=\sqrt{2}\)

Vậy GTLN của P = \(\sqrt{8}\)đạt được khi và chỉ khi \(x=y=\sqrt{2}\)