K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

x2+x+1 = xy-y

<=> x2+x+1 = y(x-1) 

=> \(y=\frac{x^2+x+1}{x-1}=\frac{x^2-x+2x-2+3}{x-1}=\frac{x\left(x-1\right)+2\left(x-1\right)+3}{x-1}=\frac{\left(x-1\right)\left(x+2\right)+3}{x-1}\)

=> \(y=x+2+\frac{3}{x-1}\)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

5 tháng 1 2020

Tìm cặp số nguyên (x;y) thỏa mãn x+y=xy

\(x+y=xy\)

\(\Leftrightarrow x+y-xy=0\)

\(\Leftrightarrow x-xy+y-1=-1\)

\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-1\)

\(\Leftrightarrow\left(1-y\right)\left(x-1\right)=-1\)

Từ trên ta xét 2 TH : 1 là 1 - y = 1 và x - 1 = -1 | 2 là 1 - y = -1 và x - 1 = 1

TH1:\(x-1=-1\) 

\(\Rightarrow x=0\)

     \(1-y=1\)

\(\Rightarrow y=0\)

TH2: \(x-1=1\)

\(\Rightarrow x=2\)

       \(1-y=1\)

\(\Rightarrow y=2\)

=> 2 cặp số nguyên (x;y) thỏa mãn x+y=xy là (0;0) và (2;2)

NV
8 tháng 10 2021

\(y\ge1+xy\Rightarrow1\ge\dfrac{1}{y}+x\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le4\Rightarrow\dfrac{y}{x}\ge4\)

\(G=\dfrac{x}{y}+\dfrac{y}{x}=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4=\dfrac{17}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

NV
23 tháng 10 2021

\(\Leftrightarrow\left(x^2-1\right)-\left(xy+y\right)=1\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-y\left(x+1\right)=1\)

\(\Leftrightarrow\left(x+1\right)\left(x-y-1\right)=1\)

x+1-11
x-y-1-11
x-20
y-2-2

Vậy \(\left(x;y\right)=\left(-2;-2\right);\left(0;-2\right)\)