K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

từ từ mk nghĩ câu này

8 tháng 4 2019

sử dụng công thức

(a+b) ^5 =a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^4

hok tốt

30 tháng 5 2017
Sao ko gửi cả cái đề lên hỏi luôn đi bạn?! :)
20 tháng 8 2016

Ta có :

\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)

\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)

\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)

\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\Leftrightarrow4x^2-y^2-7=0\)

\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)

Vì x , y nguyên dương nên \(2x+y>0\)\(2x+y>2x-y\)

Do đó \(2x+y=7\)\(2x-y=1\). Vậy \(x=2,y=3\)

21 tháng 8 2016

Ta có :

\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)

\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)

\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)

\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\)

\(\Leftrightarrow4x^2-y^2-7=0\)

\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)

Vì x , y nguyên dương nên \(2x+y>0\) và \(2x+y>2x-y\)

Do đó : \(\left[\begin{array}{nghiempt}2x+y=7\\2x-y=1\end{array}\right.\) \(\Rightarrow x=2;y=3\)

21 tháng 8 2016

\(16y^4+\left(8x^2+244\right)y^2+x^4+56x^2+784+17x^4+833\)

\(-17y^4+16y^4-238y^2+\left(8x^2+224\right)y^2-4=0\)

\(-\left[y^4+\left(8x^2+14\right)y^2+16x^4-56x^2+4\right]\)

 

 

 

18 tháng 6 2016

tham khảo :Tìm nghiệm nguyên dương của phương trình sau : 5(x+y+z+t)+10=2xyzt
vì vai trò x,y,z,t như nhau nên \(x\ge y\ge z\ge t\)

 khi đó 2xyzt=5(x+y+z+t)+10\(\le\)20x+10

⇒yzt\(\le\)15⇒t3\(\le\)15⇒t\(\le\)2Với t = 1 ta có : 2xyz = 5(x + y + z) +15 ≤ 15x + 15 ⇒2yz\(\le\)30⇒2z2\(\le\)30⇒z\(\le\)3Nếu z = 1 thì 2xy = 5(x + y) + 20 hay 4xy = 10(x + y) + 40 hay (2x – 5)(2y – 5) = 65 .

Dễ thấy rằng phương trình này có nghiệm là (x = 35; y = 3) và (x = 9; y = 5).

Giải tương tự cho các trường còn lại và trường hợp t=2. Cuối cùng ta tìm được nghiệm nguyên dương của phương trình đã cho là (x;y;z;t)=(35;3;1;1);(9;5;1;1) và các hoán vị của các bộ số này.


 

18 tháng 6 2016

cãi nhau à>

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$