Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Có \(y=x^3-3mx^2+2\Rightarrow y'=3x^2-6mx=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=2m\end{matrix}\right.\)
Cực trị \(\left\{\begin{matrix} A(0,2)\\ B(2m,2-4m^3)\end{matrix}\right.\)
Nếu \(m>0\) thì cực tiểu là \(B\). Khi đó khoảng cách từ \(B\mapsto \Delta\)
\(d=\frac{|-2m-(2-4m^3)+2|}{\sqrt{2}}=\sqrt{2}\Leftrightarrow |2m^3-m|=1\)
Đến đây xét TH để phá trị tuyệt đối ta thu được \(m=1\) thoả mãn
Nếu \(m<0\) thì cực tiểu là $A$
\(d=\frac{|-0-2+2|}{\sqrt{2}}=0\neq \sqrt{2}\) nên loại
Vậy tổng tất cả các giá trị $m$ thỏa mãn là $1$ , tức đáp án $C$
Bài 2: Mình nghĩ điều kiện sửa thành $a,b\in\mathbb{N}$ thôi thì đúng hơn.
ĐKĐB $\Leftrightarrow \log_2[(2x+1)(y+2)]^{y+2}=8-(2x-2)(y+2)$
$\Leftrightarrow (y+2)\log_2[(2x+1)(y+2)]=8-(2x-2)(y+2)$
$\Leftrightarrow (y+2)[\log_2[(2x+1)(y+2)]+(2x-2)]=8$
$\Leftrightarrow \log_2[(2x+1)(y+2)]+(2x-2)]=\frac{8}{y+2}$
$\Leftrightarrow \log_2(2x+1)+\log_2(y+2)+(2x+1)-3=\frac{8}{y+2}$
$\Leftrightarrow \log_2(2x+1)+(2x+1)=\frac{8}{y+2}+3-\log_2(y+2)=\frac{8}{y+2}+\log_2(\frac{8}{y+2})(*)$
Xét hàm $f(t)=\log_2t+t$ với $t>0$
$f'(t)=\frac{1}{t\ln 2}+1>0$ với mọi $t>0$
Do đó hàm số đồng biến trên TXĐ
$\Rightarrow (*)$ xảy ra khi mà $2x+1=\frac{8}{y+2}$
$\Leftrightarrow 8=(2x+1)(y+2)$
Áp dụng BĐT AM-GM:
$8=(2x+1)(y+2)\leq \left(\frac{2x+1+y+2}{2}\right)^2$
$\Rightarrow 2\sqrt{2}\leq \frac{2x+y+3}{2}$
$\Rightarrow 2x+y\geq 4\sqrt{2}-3$
Vậy $P_{\min}=4\sqrt{2}-3$
$\Rightarrow a=4; b=2; c=-3$
$\Rightarrow a+b+c=3$
Đáp án B.
2.
\(\Leftrightarrow\left(y+2\right)log_2\left(2x+1\right)\left(y+2\right)=8-\left(2x-2\right)\left(y+2\right)\)
\(\Leftrightarrow log_2\left(2x+1\right)\left(y+2\right)=\frac{8}{y+2}-2x+2\)
\(\Leftrightarrow log_2\left(2x+1\right)+log_2\left(y+2\right)=\frac{8}{y+2}-2x+2\)
\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=-log_2\left(y+2\right)+3+\frac{8}{y+2}\)
\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=log_2\left(\frac{8}{y+2}\right)+\frac{8}{y+2}\)
Xét hàm \(f\left(t\right)=log_2t+t\Rightarrow f'\left(t\right)=\frac{1}{t.ln2}+1>0;\forall t>0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow2x+1=\frac{8}{y+2}\)
\(\Rightarrow2x=\frac{8}{y+2}-1=\frac{6-y}{y+2}\)
\(\Rightarrow P=2x+y=y+\frac{6-y}{y+2}=y+\frac{8}{y+2}-1\)
\(\Rightarrow P=y+2+\frac{8}{y+2}-3\ge2\sqrt{\frac{8\left(y+2\right)}{y+2}}-3=4\sqrt{2}-3\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\\c=-3\end{matrix}\right.\) \(\Rightarrow a+b+c=3\)