K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

Đề sai rồi bạn nhé

14 tháng 7 2021

2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai  ucche

15 tháng 9 2021

\(\Leftrightarrow9x\left(x+2\right)+9y\left(y-\dfrac{2}{3}\right)=10\\ \Leftrightarrow9x^2+18x+9y^2-6y-10=0\\ \Leftrightarrow\left(9x^2+18x+9\right)+\left(9y^2-6y+1\right)=0\\ \Leftrightarrow9\left(x+1\right)^2+\left(3y-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)

2 tháng 9 2020

Ta có : \(x+y=2< =>\left(x+y\right)^2=4< =>\left(\frac{x+y}{2}\right)^2=1\)

Bài toán quy về chứng minh \(xy\le\left(\frac{x+y}{2}\right)^2\)

\(< =>xy\le\frac{\left(x+y\right)^2}{4}< =>4xy\le x^2+y^2+2xy\)

\(< =>4xy-2xy\le x^2+y^2< =>\left(x-y\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh

12 tháng 3 2023

Ta có : `x/5=y/3` và `x-y=-2`

ADTC dãy tỉ số bằng nhau ta có :

`x/5 = y/3 =(x-y)/(5-3)=(-2)/2=-1`

`=>x/5=-1=>x=-1.5=-5`

`=>y/3=-1=>y=-1.3=-3`

Vậy `x=-5;y=-3`

Áp dụng tính chất của DTSBN, ta được:

x/5=y/3=(x-y)/(5-3)=-2/2=-1

=>x=-5; y=-3

11 tháng 7 2015

Áp dụng tính chất của dãy tỉ số bằng nhau, có:

    \(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{20}{5}=4\)

Suy ra: \(\frac{x}{2}=4\Rightarrow x=4\cdot2=8\)

              \(\frac{y}{3}=4\Rightarrow y=3\cdot4=12\)

12 tháng 1 2021

\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)

=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)

12 tháng 1 2021

\(x:3=y:5 \Leftrightarrow \dfrac{x}{3}=\dfrac{y}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12 \\ \Rightarrow x=12.3=36 \\ y=12.5=60\)

Vậy...

31 tháng 3 2018

Ta có : 

\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y+x-y}{2014+2016}=\frac{x+x}{4030}=\frac{2x}{4030}=\frac{x}{2015}\)

Lại có : 

\(\frac{xy}{2015}=\frac{x}{2015}\)

\(\Leftrightarrow\)\(xy=x\)

\(\Leftrightarrow\)\(y=1\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y-x+y}{2014-2016}=\frac{y+y}{-2}=\frac{2y}{-2}=\frac{y}{-1}=\frac{1}{-1}=-1\)

Do đó : 

\(\frac{x}{2015}=-1\)

\(\Rightarrow\)\(x=-2015\)

Vậy \(x=-2015\) và \(y=1\)

Chúc bạn học tốt ~ 

13 tháng 1

Đặt: \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-2}=k\)

\(\Rightarrow x=3k;y=2k;z=-2k\) 

Ta có: \(x^2+3y^2-z^2=17\)

\(\Rightarrow\left(3k\right)^2+3\cdot\left(2k\right)^2-\left(-2k\right)^2=17\)

\(\Rightarrow9k^2+3\cdot4k^2-4k^2=17\)

\(\Rightarrow17k^2=17\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

Khi k = 1 thì:

\(\left\{{}\begin{matrix}x=3\\y=2\\z=-2\end{matrix}\right.\)

Khi k = -1 thì: 

\(\left\{{}\begin{matrix}x=-3\\y=-2\\z=2\end{matrix}\right.\)