K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

Ta có : \(\hept{\begin{cases}\left|5-\frac{2}{3}x\right|\ge0\forall x\\\left|\frac{1}{7}y-3\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5-\frac{2}{3}x\right|+\left|\frac{1}{7}y-3\right|\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}5-\frac{2}{3}x=0\\\frac{1}{7}y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=21\end{cases}}\)

b) Ta có \(\hept{\begin{cases}\left|5x+10\right|\ge0\forall x\\\left|6y-9\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5x+10\right|+\left|6y-9\right|\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x+10=0\\6y-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1,5\end{cases}}\)

a: =>7(x-5)>0

=>x-5>0

=>x>5

b: =>x-1 thuộc {1;-1;11;-11}

=>x thuộc {2;0;12;-10}

c: =>x+1+7 chia hết cho x+1

=>x+1 thuộc {1;-1;7;-7}

=>x thuộc {0;-2;6;-8}

d: =>(x+2)(x-5)<0

=>-2<x<5

30 tháng 7 2023

a:(- 7) . ( 5 – x) < 0

=>7(x-5)>0

=>x-5>0

=>x>5

b:11 ⁝ x – 1

=>x-1 thuộc {1;-1;11;-11}

=>x thuộc {2;0;12;-10}

c: x + 8 ⁝ x + 1

=>x+1+7 chia hết cho x+1

=>x+1 thuộc {1;-1;7;-7}

=>x thuộc {0;-2;6;-8}

d: (x + 2) . (5 – x) > 0

=>(x+2)(x-5)<0

=>-2<x<5

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

20 tháng 7 2016

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)

\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)

\(=\frac{9+31}{40}=\frac{40}{40}=1\)

Cứ thế là tìm x+1 rồi tìm x

                    y+3           y

                    x+5           z

    

16 tháng 2 2021

a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)

\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)

mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)

\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

 

b) Tương tự câu a, ta có:

\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

 

c. Tương tự, ta có:

\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)

16 tháng 2 2021

a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...

b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...

c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...

19 tháng 6 2021

Ta có: \(x+y=\frac{1}{2}\) (1)

    \(y+z=\frac{1}{3}\)(2)

  \(x+z=\frac{1}{4}\)(3)

Từ (1), (2) và (3) cộng vế theo vế: 

\(x+y+y+z+x+z=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

<=> \(2\left(x+y+z\right)=\frac{13}{12}\)

<=> \(x+y+z=\frac{13}{24}\)

=> \(\hept{\begin{cases}x=\frac{13}{24}-\left(y+z\right)=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\\y=\frac{13}{24}-\left(x+z\right)=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\\z=\frac{13}{24}-\left(x+y\right)=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\end{cases}}\)

DD
19 tháng 6 2021

\(\hept{\begin{cases}x+y=\frac{1}{2}\\y+z=\frac{1}{3}\\z+x=\frac{1}{4}\end{cases}}\Rightarrow2\left(x+y+z\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Leftrightarrow x+y+z=\frac{13}{24}\)

\(x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)

\(y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)

\(z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)

25 tháng 7 2016

\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)

\(\Leftrightarrow-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)

=> x \(\in\) {-1;0;1;2;3;4;5;6}

25 tháng 7 2016

\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)

\(\Leftrightarrow\)\(\frac{9-10}{12}\le\frac{x}{12}< 1-\left(\frac{8-3}{12}\right)\)

\(\Leftrightarrow\)\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)

\(\Leftrightarrow-1\le x< 7\)

Mà x nguyên

=>x={-1;0;1;2;3;4;5;6}

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5