Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
gọi x-1/2=y+3/4=z-5/6=k =>x=k+1/2; y=k-3/4; z=k+5/6
ta co: 5z-3x-4y=[5(k+5/6)]-[3(k+1/2)]-4[(k-3/4)]=[5k+25/6]-[3k+3/2]-[4k-3]=5k+25/6-3k-3/2-4k+3=(5k-3k-4k)+(25/6+3-3/2)=-2k+34/9=50
roi con la tu lam nha bye
Ta có:
\(3x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{3}\) và \(y-x=5\)
Áp dụng tính chất của dạy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=\frac{5}{1}=5\)
\(\hept{\begin{cases}\frac{x}{4}=5\Rightarrow x=5.4=20\\\frac{y}{5}=5\Rightarrow y=5.5=25\end{cases}}\)
Vậy \(x=20;y=25\)
b)
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(a-2b+3c=35\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a-2b+3c}{3-2.4+3.5}=\frac{35}{10}=3,5\)
\(\hept{\begin{cases}\frac{a}{3}=3,5\Rightarrow a=3,5.3=10,5\\\frac{b}{4}=3,5\Rightarrow b=3,5.4=14\\\frac{c}{5}=3,5\Rightarrow c=3,5.5=17,5\end{cases}}\)
Vậy \(a=10,5;b=14;c=17,5\)
Bài 1: \(3x=4y\Leftrightarrow y=\frac{3x}{4}\)
thay vào \(y-x=5\Leftrightarrow\frac{3x}{4}-x=5\Leftrightarrow\frac{-x}{4}=5\Leftrightarrow x=-20\Leftrightarrow y=\frac{3x}{4}=\frac{3.\left(-20\right)}{4}\)=-15
Bài 2: Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a-2b+3c}{3-8+15}=\frac{35}{10}=\frac{7}{2}\)
=>\(a=\frac{7}{2}.3=\frac{21}{2};b=\frac{7}{2}.4=14;c=\frac{7}{2}.5=\frac{35}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)
(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)
b.
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)
c.
\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)
d.
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
+)
+)
+)
Vậy bộ số l
à
Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{-3x+3}{-6}=\frac{-4y-12}{-16}=\frac{5z-25}{30}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{-3x+3}{-6}=\frac{-4y-12}{-16}=\frac{5z-25}{30}=\frac{-3x-4y+5z+3-12-25}{8}=2\)
\(\Rightarrow-3x+3=-12\Leftrightarrow-3x=-15\Leftrightarrow x=5\)
\(\Rightarrow-4y-12=-32\Leftrightarrow-4y=-20\Leftrightarrow y=5\)
\(\Rightarrow5z-25=60\Leftrightarrow z=17\)
a)
tại\(x = 1 , GTBT A(x)\) là:
\(5.1 ^3 − 3.1 + 4\)
\(= 5.1 − 3.1 + 4\)
\(= 5 − 3 + 4\)
\(= 2 + 4\)
\(=6\)
Vậy tại\(x = 1 , GTBT A ( x ) là 6\)
Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
\(\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{16}=\frac{3x^2}{27}=\frac{4y^2}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x^2}{27}=\frac{4y^2}{64}=\frac{3x^2+4y^2}{27+64}=\frac{91}{91}=1\)
\(\Rightarrow k=1;-1\)
Với k = 1 => x/3 = 1 => x = 3
y/4 = 1 => y = 4
Với k = -1 => x/3 = -1 => x = -3
y/4 = -1 => y = -4
Vậy...
Ta co : x/3=y/4
=> 3x2/3.32=4y2/2.42=3x2/27=4y2/32
Áp dụng tính chất dãy tỉ số = nhau ta có :
3x2/27=4y2/32=3x2+4y2/27+32=91/59
còn lại bạn tính nhé