Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dẫy hữu tỉ số bằng nhau
Ta có : \(\frac{x^2+y^2}{x^2+1+y^2}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+1+y^2+x^2+1+y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+y^2+x^2+y^2+3}=1+\frac{x^2+y^2+x^2+y^2}{3}\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}+y^2-2\cdot y\cdot\frac{1}{y}+\frac{1}{y^2}=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\\\orbr{\begin{cases}y=-1\\y=1\end{cases}}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\\\orbr{\begin{cases}y=1\\y=-1\end{cases}}\end{cases}}\)\(x-\frac{1}{x}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(y-\frac{1}{y}=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x+y+3/4 = x+1/2 = y+2/x = x+1+y+2/2+x = x+y+3/x+2
Nếu x+y+3 = 0 => x = -3-y
=> -3-y+1/2 = y+2/-3-y
=> y=-1 hoặc y=-2
=> x=-2 ; y=-1 hoặc x=-1 ; y=-2
Nếu x+y+z khác 0 => x+2 =4 => x=2
=> 2+1/2 = y+2/2
=> y=1
Vậy ............
Tk mk nha
Nhầm các bạn ơi : Tìm x,y biết \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\)mong các bạn giúp mình
\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)nhầm part 2 srry mọi người