Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.
Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.
25 - y2 = 8( \(x\) - 2015)2
ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\) (1)
Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y2 ≤ 25 ∀ y
⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)
⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)
Kết hợp (1) và (2) ta có: 0 ≤ (\(x-2015\))2 ≤ 3,125
vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z
⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}
th1:(\(x-2015\) )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5
th2:(\(x-2015\))2 = 1⇒ 25 - y2 = 8 ⇒ y2 = 25 - 8 ⇒ y = +- \(\sqrt{17}\) ( loại)
th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)
th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)
Vậy (\(x,y\)) = ( 2015; -5); ( 2015; 5) là giá trị thỏa mãn đề bài
Bài giải
b, \(x-5+\left|x-3\right|=4\)
\(\left|x-3\right|=4-x+5\)
\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)
c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)
\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)
\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)
\(\)\(\Rightarrow\text{ }x=-7\)
d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)
\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(\dfrac{x}{6}=\dfrac{2x}{12}=\dfrac{y}{7}\)
\(\Rightarrow\dfrac{2x}{12}=\dfrac{y}{7}=\dfrac{2x-y}{12-7}=\dfrac{15}{5}=3\)
\(\Rightarrow x=3\cdot6=18\)
\(\Rightarrow y=3\cdot7=21\)
a) Có: \(\left|x-1,5\right|\ge0;\left|x-2,5\right|\ge0\forall x\)
Mà theo đề bài: |x - 1,5| + |x - 2,5| = 0
\(\Rightarrow\begin{cases}\left|x-1,5\right|=0\\\left|x-2,5\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-1,5=0\\x-2,5=0\end{cases}\)\(\Rightarrow\begin{cases}x=1,5\\x=2,5\end{cases}\), vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) Có: \(\left|x-y\right|\ge0;\left|y-1,5\right|\ge0\forall x;y\)
Mà theo đề bài: |x - y| + |y - 1,5| = 0
\(\Rightarrow\begin{cases}\left|x-y\right|=0\\\left|y-1,5\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-y=0\\y-1,5=0\end{cases}\)\(\Rightarrow\begin{cases}x=y\\y=1,5\end{cases}\)
Vậy x = y = 1,5
Ta có: \(\frac{x}{y}=\frac{5}{7}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{a+b}{5+7}=\frac{72}{12}=6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=6\Rightarrow x=30\\\frac{y}{7}=6\Rightarrow y=42\end{cases}}\)
Vậy \(x=30;y=42\)
\(\left(2+4x\right)^2+\left(y-6\right)^2=0\)
\(\left\{{}\begin{matrix}\left(2+4x\right)^2\ge0\\\left(y-6\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(2+4x\right)^2+\left(y-6\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(2+4x\right)^2=0\Rightarrow2+4x=0\Rightarrow4x=-2\Rightarrow x=-0,5\\\left(y-6\right)^2=0\Rightarrow y-6=0\Rightarrow y=6\end{matrix}\right.\)
\(\left|8-4x\right|+\left|2x-y\right|=0\)
\(\left\{{}\begin{matrix}\left|8-4x\right|\ge0\\\left|2x-y\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|8-4x\right|+\left|2x-y\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|8-4x\right|=0\Rightarrow8-4x=0\Rightarrow4x=8\Rightarrow x=2\\2.2-y=0\Rightarrow y=4\end{matrix}\right.\)
\(\left|16+0,5x\right|+\left(y-2\right)^2=0\)
\(\left\{{}\begin{matrix}\left|16+0,5x\right|\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left|16+0,5x\right|+\left(y-2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|16+0,5x\right|=0\Rightarrow16+0,5x=0\Rightarrow0,5x=16\Rightarrow x=32\\\left(y-2\right)^2=0\Rightarrow y-2=0\Rightarrow y=2\end{matrix}\right.\)
Lập bảng xét dấu là ra thôi bài này dễ mà
Do \(\left(x-7\right)^8\ge0;\left|y^2-4\right|\ge0\)
\(\Rightarrow\left(x-7\right)^8+\left|y^2-4\right|\ge0\)
Mà theo đề bài: (x - 7)8 + |y2 - 4| = 0
=> \(\begin{cases}\left(x-7\right)^8=0\\\left|y^2-4\right|=0\end{cases}\)=> \(\begin{cases}x-7=0\\y^2-4=0\end{cases}\)=> \(\begin{cases}x=7\\y^2=4\end{cases}\)=> \(\begin{cases}x=7\\y\in\left\{2;-2\right\}\end{cases}\)