Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dtsbn:
\(\dfrac{x}{33}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{z-x}{5-33}=\dfrac{-196}{-28}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.33=231\\y=7.4=28\\z=7.5=35\end{matrix}\right.\)
a) Vì \(\dfrac{x}{y} = \dfrac{5}{3} \Rightarrow \dfrac{x}{5} = \dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{x + y}}{{5 + 3}} = \dfrac{{16}}{8} = 2\\ \Rightarrow x = 2.5 = 10\\y = 2.3 = 6\end{array}\)
Vậy x=10, y=6
b) Vì \(\dfrac{x}{y} = \dfrac{9}{4} \Rightarrow \dfrac{x}{9} = \dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{9} = \dfrac{y}{4} = \dfrac{{x - y}}{{9 - 4}} = \dfrac{{ - 15}}{5} = - 3\\ \Rightarrow x = ( - 3).9 = - 27\\y = ( - 3).4 = - 12\end{array}\)
Vậy x = -27, y = -12.
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
\(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=30\Rightarrow x=60\\\dfrac{y}{\dfrac{3}{2}}=30\Rightarrow y=45\\\dfrac{z}{\dfrac{4}{3}}=30\Rightarrow z=40\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{15}{5}=3\)
⇒\(\left\{{}\begin{matrix}x=3.9=27\\y=3.7=21\\z=3.3=9\end{matrix}\right.\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
h) x/y = 9/10 ⇒ y/10 = x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120
*) x/9 = 120 ⇒ x = 120.9 = 1080
*) y/10 = 120 ⇒ y = 120.10 = 1200
Vậy x = 1080; y = 1200
k) x/y = 3/4
⇒ x/3 = y/4
⇒ 5y/20 = 3x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3
*) 3x/9 = 3 ⇒ x = 3.9:3 = 9
*) 5y/20 = 3 ⇒ y = 3.20:5 = 12
Vậy x = 9; y = 12
1: Ta có: \(\dfrac{x}{3}=\dfrac{y}{6}\)
mà 4x-y=42
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{4x-y}{4\cdot3-6}=\dfrac{42}{12-6}=\dfrac{42}{6}=7\)
=>\(x=7\cdot3=21;y=6\cdot7=42\)
2: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x-2y+3z=33
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{2-6+15}=\dfrac{33}{11}=3\)
=>\(x=3\cdot2=6;y=3\cdot3=9;z=3\cdot5=15\)
3: \(\dfrac{x}{y}=\dfrac{6}{5}\)
=>\(\dfrac{x}{6}=\dfrac{y}{5}\)
mà x+y=121
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+y}{6+5}=\dfrac{121}{11}=11\)
=>\(x=11\cdot6=66;y=11\cdot5=55\)
\(\dfrac{2}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{6}\) (\(x;y\) \(\in\) N*)
\(\dfrac{2}{x}\) = \(\dfrac{1}{6}\) - \(\dfrac{1}{y}\)
\(\dfrac{2}{x}\) = \(\dfrac{y-6}{6y}\)
\(x\) = 2: \(\dfrac{y-6}{6y}\)
\(x\) = \(\dfrac{12y}{y-6}\)
Vì \(x\); y \(\in\) N* nên 12\(y\) ⋮ y - 6 ( và y > 6)
12y ⋮ y - 6 ⇔ 12y - 72 + 72 ⋮ y - 6 ⇔ 12.(y-6) + 72 ⋮ y - 6 ⇔ 72⋮ y - 6 72 = 23.32
Ư(72) = { 1; 2; 3; 4; 6; 8; 9; 12; 18; 24; 36; 72}
Lập bảng ta có:
\(y-6\) | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 18 | 24 | 36 | 72 |
y | 7 | 8 | 9 | 10 | 12 | 14 | 15 | 18 | 24 | 30 | 42 | 78 |
\(x\)=\(\dfrac{12y}{y-6}\) | 84 | 48 | 36 | 30 | 34 | 21 | 20 | 18 | 16 | 15 | 14 | 13 |
Theo bảng trên ta có các cặp số tự nhên \(x\); y thỏa mãn đề bài lần lượt là:
(\(x\);y) =(84;7); (48;8); (36;9); (30;10);(34;12); (21;14); (20;15);(18;18);
(16;24); (15; 30); (14;42);(13;78)
\(\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\left(x;y\inℕ^∗\right)\)
\(\Leftrightarrow\dfrac{2y+x}{xy}=\dfrac{1}{6}\)
\(\Leftrightarrow6\left(2y+x\right)=xy\)
\(\Leftrightarrow12y+6x=xy\)
\(\Leftrightarrow12y-xy+6x=0\)
\(\Leftrightarrow y\left(12-x\right)+6x-72+72=0\)
\(\Leftrightarrow-y\left(x-12\right)+6\left(x-12\right)=-72\)
\(\Leftrightarrow\left(x-12\right)\left(6-y\right)=-72\)
\(\Leftrightarrow\left(x-12\right);\left(6-y\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-8;8;-9;9;-18;18;-24;24;-36;36;-72;72\right\}\)
Lập bảng sẽ ra \(\left(x;y\inℕ^∗\right)\) cần tìm...
áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/4=y/15=(x-y)/(4-15)=-33/-11=3
x/4=3⇒x=12
y/15=3⇒y=45
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{4}=\dfrac{y}{15}=\dfrac{x-y}{4-15}=\dfrac{-33}{-11}=3\)
\(\Rightarrow x=3.4=12\)
\(\Rightarrow y=3.15=45\)