K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

Ta có: \(x^2-y^2=x^2-xy+xy-y^2=x\left(x-y\right)+y\left(x-y\right)\)

                                          \(=\left(x-y\right)\left(x+y\right)=38\)(1)

Mặt khác: \(\frac{3}{5x}=\frac{2}{3y}\Leftrightarrow10x=9y\Leftrightarrow x=\frac{9y}{10}\). THAY VÀO (1) TA ĐƯỢC:

     (1) \(\Leftrightarrow\left(\frac{9y}{10}-y\right)\left(\frac{9y}{10}+y\right)=38\)

          \(\Leftrightarrow\frac{-y}{10}.\frac{19y}{10}=38\)

           \(\Leftrightarrow\frac{-19y^2}{100}=38\Leftrightarrow y^2=\frac{38.100}{-19}=-200\)(VÔ LÍ)

Vậy không có x,y đâu nha

8 tháng 10 2021

\(\frac{3}{5}x=\frac{5}{4}y\)\(\hept{\begin{cases}\frac{3x}{5}=\frac{2y}{3}\\x^2-y^2=38\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{6x}{10}=\frac{6y}{9}=\frac{6x-6y}{10-9}=6\left(x-y\right)\\\left(x-y\right)\left(x+y\right)=38\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{10}=x-y\\\left(x-y\right)\left(x+y\right)=38\end{cases}}}\)

Từ phương trình (1) ta suy ra 

                 \(y=\frac{9x}{10}\)Thay  \(\left(x-y\right)=\frac{x}{10}\)và   \(y=\frac{9x}{10}\) vào phương tfinhf (2) được \(\frac{x}{10}\left(x+\frac{9x}{10}\right)=38\Leftrightarrow\frac{19x^2}{100}=38\Leftrightarrow x^2=200\)\(\Leftrightarrow|x|=10\sqrt{2}\)\(x_1=10\sqrt{2}\)\(x_2=-10\sqrt{2}\)

Suy ra \(y_1=\frac{9x_1}{10}=\frac{9.10\sqrt{2}}{10}=9\sqrt{2}\)và \(y_2=\frac{9x_2}{10}=\frac{9.\left(-10\sqrt{2}\right)}{10}=-9\sqrt{2}\)

Hệ phương trình có hai nghiệm \(\left(10\sqrt{2};9\sqrt{2}\right)\) và  \(\left(-10\sqrt{2};-9\sqrt{2}\right)\)