K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2020

\(x^2+6x+9=0\\ \Leftrightarrow x^2+2.3.x+3^2=0\\ \Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\)

Vậy \(x=-3\)

24 tháng 4 2019

6 tháng 4 2018

13 tháng 11 2018

27 tháng 7 2019

28 tháng 2 2018

7 tháng 12 2019

Tìm được

a) u u + 1                   b)  x − 2 x 2 − 9

16 tháng 3 2017

Biểu thức xác định khi x 2 - 36 ≠ 0 ,  x 2 + 6 x ≠ 0 , 6 – x ≠ 0 và 2x – 6  ≠  0

x 2 - 36 ≠ 0  ⇒ (x – 6)(x + 6)  ≠  0 ⇒ x  ≠  6 và x  ≠  -6

x 2 + 6 x ≠ 0  ⇒ x(x + 6)  ≠  0 ⇒ x  ≠  0 và x  ≠  -6

6 – x  ≠  0 ⇒ x  ≠  6

2x – 6  ≠  0 ⇒ x  ≠  3

Vậy x  ≠  0, x  ≠  3, x  ≠  6 và x  ≠  -6 thì biểu thức xác định.

Ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy biểu thức không phụ thuộc vào biến x.

13 tháng 3 2019

a) (x – 1)(x2 + x + 1) – 2x = x(x – 1)(x + 1)

⇔ x3 – 1 – 2x = x(x2 – 1)

⇔ x2 – 1 – 2x = x3 – x

⇔ -2x + x = 1 ⇔ - x = 1 ⇔ x = -1

Tập nghiệm của phương trình: S = { -1}

b) x2 – 3x – 4 = 0

⇔ x2 – 4x + x – 4 = 0 ⇔ x(x – 4) + (x – 4) = 0

⇔ (x – 4)(x + 1) = 0 ⇔ x – 4 = 0 hoặc x + 1 = 0

⇔ x = 4 hoặc x = -1

Tập nghiệm của phương trình: S = {4; -1}

c) ĐKXĐ : x – 1 ≠ 0 và x2 + x + 1 ≠ 0 (khi đó : x3 – 1 = (x – 1)(x2 + x + 1) ≠ 0)

⇔ x ≠ 1

Quy đồng mẫu thức hai vế:

Khử mẫu, ta được: 2x2 + 2x + 2 – 3x2 = x2 – x

⇔ -2x2 + 3x + 2 = 0 ⇔ 2x2 – 3x – 2 = 0

⇔ 2x2 – 4x + x – 2 = 0 ⇔ 2x(x – 2) + (x – 2) = 0

⇔ (x – 2)(2x + 1) = 0 ⇔ x – 2 = 0 hoặc 2x + 1 = 0

⇔ x = 2 hoặc x = -1/2(thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {2 ; -1/2}

d) ĐKXĐ : x – 5 ≠ 0 và x – 1 ≠ 0 (khi đó : x2 – 6x + 5 = (x – 5)(x – 1) ≠ 0)

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x – 1 – 3 = 5x – 25 ⇔ -4x = -21

⇔ x = 21/4 (thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {21/4}

16 tháng 10 2019