Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y tlt nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)
\(\Rightarrow\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}=\dfrac{x_1}{6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{18+6}=\dfrac{24}{24}=1\\ \Rightarrow\left\{{}\begin{matrix}x_1=6\\y_1=3\end{matrix}\right.\)
Ta có \(Q\left(1\right)=5-5+a^2-a=0\Leftrightarrow a\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Áp dụng dãy tỉ số bằng nhau:
b.
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=-5.\left(-1\right)=5\end{matrix}\right.\)
d.
\(\dfrac{4}{x}=\dfrac{7}{y}\Rightarrow\dfrac{y}{7}=\dfrac{x}{4}=\dfrac{y-x}{7-4}=\dfrac{-12}{3}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-4\right)=-16\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
Đề trước đó:
(x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2+(x-2)^2-x
<=>x^2+x-7x-7-x^2+6x-9=9x^2-25-9x^2-6x-1+x^2-4x+4-x
<=>x^2-11x-6=0
<=>x^2-2x. 11/2 + 121/4-145/4=0
<=>(x-11/2)^2=145/4
<=>|x-11/2|=căn(145)/2
<=>x=[11+-căn(145)]/2
\(\dfrac{x}{9}\) < \(\dfrac{4}{7}\) < \(x\) + \(\dfrac{1}{9}\)
\(\dfrac{7x}{63}\) < \(\dfrac{36}{63}\) < \(\dfrac{63x}{63}\) + \(\dfrac{7}{63}\)
7\(x\) < 36 < 63\(x\) + 7
⇒\(\left\{{}\begin{matrix}7x< 36\\63x+7>36\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>36-7\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>29\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\x>\dfrac{29}{63}\end{matrix}\right.\)
\(\dfrac{29}{63}\)< \(x\) < \(\dfrac{36}{7}\) vì \(x\in\) Z nên \(x\in\) { 1; 2; 3; 4; 5}
⇒ \(\dfrac{x}{9}\) = \(\dfrac{1}{9}\); \(\dfrac{2}{9}\); \(\dfrac{3}{9}\); \(\dfrac{4}{9}\);\(\dfrac{5}{9}\)
/x-5/=x+3
th1
x-5=x+3
x=x+8(KTM)
th2
-x+5=x+3
5=2x+3
2=2x
=> x=1
vậy x=1
Bài này có 2 cách giải nhưng mk khuyên bạn nên làm cách thứ 2, cách 1 chỉ đúng với một số bài toán, một số bài khác thì không sai nhưng thiếu giá trị của x. Cách thứ 2 thì có thể áp dụng với tất cả bài toán nha bạn :)
* Cách 1 :
\(\left|x-5\right|-x=3\)
\(\Leftrightarrow\)\(\left|x-5\right|=x+3\)
Vì \(\left|x-5\right|\ge0\) nên \(x+3\ge0\)\(\Leftrightarrow\)\(x\ge-3\)
\(PT\)\(\Leftrightarrow\)\(x-5=x+3\)
\(\Leftrightarrow\)\(x-x=3+5\)
\(\Leftrightarrow\)\(0=8\) ( vô lý )
Vậy không có x thoả mãn đề bài ( thật sự là có nhưng cách này không tìm được x )
* Cách 2 :
\(\left|x-5\right|-x=3\)
\(\Leftrightarrow\)\(\left|x-5\right|=x+3\)
+) Nếu \(x-5\ge0\)\(\Leftrightarrow\)\(x\ge5\) ta có :
\(x-5=x+3\)
\(\Leftrightarrow\)\(x-x=3+5\)
\(\Leftrightarrow\)\(0=8\) ( vô lý )
+) Nếu \(x-5< 0\)\(\Leftrightarrow\)\(x< 5\) ta có :
\(-\left(x-5\right)=x+3\)
\(\Leftrightarrow\)\(-x+5=x+3\)
\(\Leftrightarrow\)\(x+x=5-3\)
\(\Leftrightarrow\)\(2x=2\)
\(\Leftrightarrow\)\(x=\frac{2}{2}\)
\(\Leftrightarrow\)\(x=1\) ( thoả mãn \(x< 5\) )
Vậy \(x=1\)
Chúc bạn học tốt ~