K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Đkxđ : \(x\ne2\)

\(A=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{4}{x-2}\)

\(=x+2+\frac{4}{x-2}\)

Để \(A\in Z\Rightarrow\frac{4}{x-2}\in Z\)

\(\Rightarrow x-2\inƯ_4\)

Mà \(Ư_4=\left\{1,-1,2,-2,4,-4\right\}\)

\(\Rightarrow....\)

Xét 6 trường hợp tìm ra x nha. 

25 tháng 5 2019

Để A là số nguyên thì \(x^2⋮x-2\)(1)

                               \(x-2⋮x-2\)\(\Rightarrow x^2-4x+4⋮x-2\)(2)

Trừ vế (1) cho (2) thì \(4x-4⋮x-2\)(3)

                              \(x-2⋮x-2\Rightarrow4x-8⋮x-2\)(4)

Trừ (3) cho (4) thì \(4⋮x-2\)

Vậy x-2 thuộc Ư(4)

.............

9 tháng 3 2018

a, Để P xác định <=> \(\hept{\begin{cases}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x^2-2x+3x-6\ne\\x\ne2\end{cases}0\Rightarrow\hept{\begin{cases}x\ne-3\\\left(x-2\right)\\x\ne2\end{cases}}}\left(x+3\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

Rút gọn

\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

\(=\frac{x+2}{x+3}-\frac{5}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x+2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b,Để \(P=\frac{-3}{4}\)

Thì \(\frac{x-4}{x-2}=\frac{-3}{4}\)

\(\Rightarrow4x-16=-3x+6\)

\(\Rightarrow4x-16-3x+6=0\)

\(\Rightarrow x-10=0\)

\(\Rightarrow x=10\left(t/m\right)\)

Vậy \(P=\frac{-3}{4}\)khi x=10

c,Để \(P\inℤ\Rightarrow x-4⋮x-2\)

mà \(x-4=\left(x-2\right)-2\)

Vì \(x-2⋮\left(x-2\right)\Rightarrow-2⋮\left(x-2\right)\)

\(\Rightarrow x-2\inƯ\left(-2\right)=\left\{\pm1,\pm2\right\}\)

\(\Rightarrow x\in\left\{3,1,4,0\right\}\left(t/m\right)\)

Vậy ......................

d,\(x^2-9=0\)

\(\Rightarrow x^2=9\)

\(\Rightarrow x=\pm3\)

TH1   

Thay x= 3 ta có 

\(P=\frac{3-4}{3-2}\)

\(=\frac{-1}{1}=-1\)

TH2

\(x=-3\)

Vậy \(P=-1\Leftrightarrow x=3\)

e,Để P >0 khi 

\(\orbr{\begin{cases}\hept{\begin{cases}x-4>0\\x-2>0\end{cases}}\\\hept{\begin{cases}x-4< 0\\x-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>4\\x>2\end{cases}}\\\hept{\begin{cases}x< 4\\x< 2\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}x>4\\x< 2\end{cases}}\)

Vậy \(P>0\Leftrightarrow\orbr{\begin{cases}x>4\\x< 2\&x\ne-3\end{cases}}\)

13 tháng 10 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)

\(P=\left(\frac{x^2}{x^3-4x}-\frac{10}{5x+10}-\frac{1}{2-x}\right):\)\(\left(x+2+\frac{6-x^2}{x-2}\right)\)

\(=\left(\frac{x^2}{x\left(x^2-4\right)}-\frac{10}{5\left(x+2\right)}+\frac{1}{x-2}\right)\)\(:\left(\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{6-x^2}{x-2}\right)\)

\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)\(:\left(\frac{x^2-4+6-x^2}{x-2}\right)\)

\(=\frac{x-2x+4+x+2}{\left(x-2\right)\left(x+2\right)}:\frac{2}{x-2}\)

\(=\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right).2}=\frac{3}{x+2}\)

\(b,P\in Z\Leftrightarrow\frac{3}{x+2}\in Z\Rightarrow3\)\(⋮\)\(x+2\Rightarrow x+2\inƯ_3\)

MÀ \(Ư_3=\left\{\pm1;\pm3\right\}\)

TH1 : \(x+2=-1\Rightarrow x=-3\)

Th2 : \(x+2=1\Rightarrow x=-1\)

Th3 : \(x+2=-3\Rightarrow x=-5\)

Th4 : \(x+3=3\Rightarrow x=0\left(ktm\right)\)

Vậy để P có giá trị nguyên thì x thuộc { - 3 ; - 5 ;- 1 }

\(c,P=-1\Leftrightarrow\frac{3}{x+2}=-1\)

\(\Rightarrow\frac{3}{x+2}=\frac{-1}{1}\Rightarrow3=-1\left(x+2\right)\)

\(\Rightarrow-x-2=3\Rightarrow-x=5\)

\(\Rightarrow x=-5\)

Vậy để P = -1 thì x = - 5

\(d,P>0\Leftrightarrow\frac{3}{x+2}>0\)

Vì \(x+2>0\)nên để \(\frac{3}{x+2}>0\)thì \(x+2>0\)

\(\Rightarrow x>-2\)

Vậy để \(P>0\)thì \(x>2\) và \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

13 tháng 10 2019

\(đk\hept{\begin{cases}\left(x+2\right)\left(x-2\right)x\ne0\\x+2\ne0\end{cases}< =>x\ne0;x\ne\pm}2\)

P=\(\left(\frac{x}{x^2-4}-\frac{10\left(x-2\right)}{5\left(x+2\right)\left(x-2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right):\)\(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{6-x^2}{x+2}\)

=\(\frac{x-2\left(x-2\right)+x+2}{\left(x-2\right)\left(x+2\right)}:\left(\frac{x^2-4+6-x^2}{x+2}\right)\)=\(\frac{6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=\frac{3}{x-2}\)

b) P \(\in Z\)<=> x-2=3;x-2=-3;x-2=1;x-2=-1 <=> x=5; x=-1; x=3; x=1 (thỏa mãn điều kiện ban đầu)

c) P=1 <=> x-2=3 <=> x=5 (thỏa mãn điều kiện)

d) P>0 <=> x-3 >=0 <=> x>3 kết hợp với điều kiện ban đầu => x>3

\(\frac{x-m}{x-2}-\frac{x+m}{x+1}\)

\(=\frac{x^2+x-mx-m-x^2+2x+mx-2m}{\left(x-2\right)\left(x+1\right)}\)

\(=\frac{3\left(x-m\right)}{\left(x-2\right)\left(x+1\right)}\)

vậy ...........

25 tháng 3 2021

tiếp rồi làm sao

30 tháng 12 2019

\(e ) Để \)  \(M\)\(\in\)\(Z \)  \(thì\) \(1 \)\(⋮\)\(x +3\)

\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }

\(Lập\)  \(bảng :\)

\(x +3\)\(1\)\(- 1\)
\(x\)\(-2\)\(- 4\)

\(Vậy : Để \)  \(M\)\(\in\)\(Z\)  \(thì\) \(x\)\(\in\)\(- 4 ; - 2\) }

30 tháng 12 2019

e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)

<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}

Lập bảng: 

x + 31-1
  x-2-4

Vậy ....

f) Ta có: M > 0

=> \(\frac{1}{x+3}\) > 0

Do 1 > 0 => x + 3 > 0

=> x > -3

Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2

1 tháng 6 2017
  1. Rút gọn : \(P=\frac{x^2}{x-2}.\left(\frac{x^2+4-4x}{x}\right)+3\)\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3\)\(=x^2-2x+3=x^2-2x+1+2\)
  2. Vì \(P=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\)nên \(\Rightarrow P_{min}=2\)dấu "=" khi \(x-1=0\Rightarrow x=1\)
1 tháng 6 2017

A) MTC la x(x-2)

M=\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\frac{2x-5y}{x-3y}

=\frac{2.10y-5y}{10y-3y}=\frac{15}{7}
 

Câu 2