Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(B=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)
A = 20 . 21 . 22 . 23. 24....2100
= 1 . 21 . 22 . 23 . 24 .... 2100
= 1 . 21 + 2 + 3 + .... + 100
Ta có : Số số hạng của dãy số 1 + 2 + 3 + .... + 100 là :
(100 - 1) : 1 + 1 = 100 ( số hạng )
Tổng của dãy số 1 + 2 + 3 + ... + 100 là :
(100 + 1) . 100 : 2 = 5050
Thay vào, ta được :
A = 1 . 25050 = 25050
Vậy A = 25050
\(A=2^0.2^1.2^2.2^3.....2^{100}=2^1.2^2.2^3......2^{100}=2^{1+2+3+....+100}=2^{\left(1+100\right).\left(100-1+1\right):2}=2^{5050}\)
\(B=6^0.6^1.6^2.6^3.6^4......6^{600}=6^{1+2+3+4+...+600}=6^{\left(1+600\right).\left(600-1+1\right):2}=6^{180300}\)
\(C=7^0.7^1.7^2.7^3.7^4.....7^{700}=7^{0+1+2+3+4+...+700}=7^{\left(700+0\right).\left(700-0+1\right):2}=7^{245000}\)
\(D=8^1.8^2.8^3......8^{800}=8^{1+2+3+....+800}=8^{\left(800+1\right).\left(800-1+1\right):2}=8^{320400}\)
\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+......+\dfrac{1}{2x-2}-\dfrac{1}{2x}\right)=\dfrac{3}{16}\)
\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{2x}\right)=\dfrac{3}{16}\)
\(\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{3}{16}:\dfrac{1}{2}\)
\(\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{3}{8}\)
\(\dfrac{1}{2x}=\dfrac{1}{2}-\dfrac{3}{8}\)
\(\dfrac{1}{2x}=\dfrac{1}{8}\)
⇒x=8:2=4
a) 2x - 138 = 32 . 23
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 105
b) 6x - 39 = 588 : 28
6x - 39 = 21
6x = 21 + 39
6x = 60
x = 60 : 6 = 10
c)42 . x + 37 . 42 = 39 . 42
42 . (x + 37) = 1638
x + 37 = 1638 : 42
x + 37 = 39
x = 39 - 37
x = 2
Bài 1 :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=1-\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{10}{19}\)
\(\Leftrightarrow10.\left(2x+3\right)=19\Leftrightarrow2x+3=\frac{19}{10}\)
\(\Leftrightarrow2x=\frac{19}{10}-3\Leftrightarrow2x=-\frac{11}{10}\)
\(\Leftrightarrow x=-\frac{11}{20}=-0,55\)
Bài 2 :
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2016}-\frac{1}{2018}\)
\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}=\frac{2.2.2.5.7.5.5.7.7.7}{2.5.7.7.2.5.7.7}=\frac{2.5}{1}=10\)
Ko biết có đúng ko
\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}=\frac{2^3.\left(5.5^2\right).\left(7.7^3\right)}{2^2.5^2.7^{2^2}}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=2.5=10\)
Đặt A=\(\dfrac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
A=\(\dfrac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}\)
A=\(\dfrac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
A=2.\(5^2\)
A=2.25
A=50
a) (157 - 3x).57 = 4.59
157 - 3x = 4.59:57
157 - 3x = 22.52
157 - 3x = 100
3x = 157 - 100
3x = 57
x = 19
b) (170 - 6x).78 = 2.710
170 - 6x = 2.710:78
170 - 6x = 2.72
170 - 6x = 98
6x = 170 - 98
6x = 72
x = 72:6
x = 12
a) => (157 - 3x) = 4 . 52 = 100
=> 3x = 157 - 100 = 57
=> x = 57 : 3 = 19
b) => (170 - 6x) = 2 . 72 = 98
=> 6x = 170 - 98 = 72
=> x = 72 : 6 = 12