Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)
A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)
<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)
2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)
B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)
<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)
Vậy .............
b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1
D là số nguyên khi \(\sqrt{x}\) - 1 là số nguyên .
\(\Leftrightarrow\sqrt{x}-1\inƯ_3\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{\sqrt{2};2;0\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{;2;0\right\}\)
Vậy x = 2 ; x = 0
điều kiện: x>=0 và x khác 1
E=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
muốn E nguyên thì \(\sqrt{x}+1\)={1,-1,-2,2}
- \(\sqrt{x}-1=1\)=> x=4
- \(\sqrt{x}-1=-1\)=>x=0
- \(\sqrt{x}-1=-2\) VN
- \(\sqrt{x}-1=2\)=> x=9
Vậy giá trị x là{0,4,9} thỏa đề bài
Để \(\frac{11}{\sqrt{x}-5}\) nhận giá trị nguyên thì \(\sqrt{x}-5\in\left\{\pm1;\pm11\right\}\)
Cần chú ý \(\sqrt{x}-5\ge-5\) nên \(\sqrt{x}-5\in\left\{-1;1;11\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\)
\(\Rightarrow x\in\left\{16;36;256\right\}\)
Để B là số nguyên thì \(-2x+1⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
Để I có giá trị nguyên thì \(\sqrt{x}-3⋮2\)
Vì \(\left(3,2\right)=1\)\(\Rightarrow\sqrt{x}\)không chia hết cho 2
\(\Rightarrow\sqrt{x}\in\left\{1;3;5;7;...\right\}\)
\(\Rightarrow x\in\left\{1;9;25;49;...\right\}\)
Vậy \(x\in\left\{1;9;25;49;...\right\}\)