Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(c.\) \(2x+1⋮x-1\)
\(\Leftrightarrow\left(2x-2\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
Ta có bẳng sau:
\(x-1\) | \(-1\) | \(1\) | \(3\) | \(-3\) |
\(x\) | \(0\) | \(2\) | \(4\) | \(-2\) |
19 chia hết cho x
x \(\in\) Ư( 19 )
x \(\in\) { 1 ; 19 }
a) Ta có: \(19⋮x\)
\(\Leftrightarrow x\inƯ\left(19\right)\)
hay \(x\in\left\{1;-1;19;-19\right\}\)
Vậy: \(x\in\left\{1;-1;19;-19\right\}\)
b) Ta có: \(23⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(23\right)\)
\(\Leftrightarrow x+1\in\left\{1;-1;23;-23\right\}\)
hay \(x\in\left\{0;-2;22;-24\right\}\)
Vậy: \(x\in\left\{0;-2;22;-24\right\}\)
c) Ta có: \(12⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(12\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
hay \(x\in\left\{2;0;3;-1;4;-2;5;-3;7;-5;13;-11\right\}\)
Vậy: \(x\in\left\{2;0;3;-1;4;-2;5;-3;7;-5;13;-11\right\}\)
MK lm mẫu cho câu a) nhé, các câu còn lại bn làm tương tự
a) \(2x+5\)\(⋮\)\(x+2\)
\(\Rightarrow\)\(2\left(x+2\right)+1\)\(⋮\)\(x+2\)
Ta thấy \(2\left(x+2\right)\)\(⋮\)\(x+2\)
nên \(1\)\(⋮\)\(x+2\)
\(\Rightarrow\)\(x+2\)\(\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\)\(x=\left\{-3;-1\right\}\)
Vậy...
a) \(2x+5\)\(⋮\)\(x+2\)
\(\Rightarrow\)\(2\left(x+2\right)+1\)\(⋮\)\(x+2\)
Ta thấy \(2\left(x+2\right)\)\(⋮\)\(x+2\)
nên \(1\)\(⋮\)\(x+2\)
\(\Rightarrow\)\(x+2\)\(\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\)\(x=\left\{-3;-1\right\}\)
a: \(\Leftrightarrow2x+4+1⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1\right\}\)
hay \(x\in\left\{-1;-3\right\}\)
b: \(\Leftrightarrow3x-6+11⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{3;1;13;-9\right\}\)
c: \(\Leftrightarrow-4x+4-2⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{2;0;3;-1\right\}\)
d: \(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{2;0;3;-1\right\}\)
a) 4 chia hết cho x
=> x \(\in\) Ư(4) = {1;-1;2;-2;4;-4}
Vậy x \(\in\) {1;-1;2;-2;4;-4}
b) 6 chia hết x+1
=> x+1 \(\in\) Ư(6) = {-1;1;2;-2;3;-3;6;-6}
Vậy x \(\in\) {-2;0;1;-3;2;-4;5;-7}
c) 12 chia hết cho x và 16 chia hết cho x
=> x \(\in\) ƯC(12;16) = {1;2;4}
Vậy x \(\in\) {1;2;4}
d) x chia hết cho 6 và x chia hết cho 4
=> x \(\in\) BC(6;4) = {0;12;24;48;...}
Mà 12<x<40 => x = 24
e) x+5 chia hết cho x+1
=> x+1+4 chia hết cho x+1
=> 4 chia hết cho x+1
=> x+1 \(\in\) Ư(4) = {1;-1;2;-2;4;-4}
Vậy x \(\in\) {0;-2;1;-3;3;-5}
b) \(6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)\)
hay \(x+1\in\left\{1,2,3,6\right\}\)
Vậy \(x\in\left\{0,1,2,5\right\}\)
2 Tìm n
a, n+6 chia hết cho n+1/ =n+1+5 chia hết cho n+1/ =(n+1).5 chia hết cho n+1/ suy ra n+1 thuộc ước (5)
Để n+1 chia hết cho n+1
suy ra 5 chia hết cho n+1/ Suy ra n thuộc Ư(5)=(-1; -5; 1; 5)
Ta lập bảng
n+1 -1 -5 1 5
n -2 -6 0 4
suy ra: n thuộc (-2; -6; 0; 4)
thử lại đi xem coi đúng ko nhé
a) 6 ⋮ (x - 1)
=> x - 1 ϵ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
TH1: x - 1 = -6 => x = -5 (Thỏa mãn)
TH2: x - 1 = -3 => x = -2 (Thỏa mãn)
TH3: x - 1 = -2 => x = -1 (Thỏa mãn)
TH4: x - 1 = -1 => x = 0 (Thỏa mãn)
TH5: x - 1 = 1 => x = 2 (Thỏa mãn)
TH6: x - 1 = 2 => x = 3 (Thỏa mãn)
TH7: x - 1 = 3 => x = 4 (Thỏa mãn)
TH8: x - 1 = 6 => x = 7 (Thỏa mãn)
Vậy x ϵ {-5; -2; -1; 0; 2; 3; 4; 7}
b) (x + 2) ⋮ (x - 1)
Ta có: (x + 2) = (x - 1) + 3
Vì (x - 1) ⋮ (x - 1) nên để (x - 1) + 3 ⋮ (x - 1) thì 3 ⋮ (x - 1)
=> x - 1 ϵ Ư(3) = {-3; -1; 1; 3}
TH1: x - 1 = -3 => x = -2 (Thỏa mãn)
TH2: x - 1 = -1 => x = 0 (Thỏa mãn)
TH3: x - 1 = 1 => x = 2 (Thỏa mãn)
TH4: x - 1 = 3 => x = 4 (Thỏa mãn)
Vậy x ϵ {-2; 0; 2; 4}