K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2021

\(\dfrac{4}{7}x=\dfrac{9}{8}-\dfrac{1}{8}\left(\dfrac{1}{8}=0,125\right)\)

\(\dfrac{4}{7}x=1\)

->x=1:\(\dfrac{4}{7}\)

-> x= \(\dfrac{7}{4}\)

Ta có: \(\dfrac{4}{7}x=\dfrac{9}{8}-0.125\)

\(\Leftrightarrow\dfrac{4}{7}x=\dfrac{9}{8}-\dfrac{1}{8}=1\)

hay \(x=\dfrac{7}{4}\)

Vậy: \(x=\dfrac{7}{4}\)

a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1

=>1,7x=6,7

hay x=67/17

b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)

=>150x+120-45x-75=96x+216-40x+360

=>105x+45=56x+576

=>49x=531

hay x=531/49

25 tháng 5 2021

`(x+1)/9+(x+2)/8=(x+3)/7+(x+4)/6`

`<=>(x+1)/9+1+(x+2)/8+1=(x+3)/7+1+(x+4)/6+1`

`<=>(x+10)/9+(x+10)/8=(x+10)/7+(x+10)/6`

`<=>(x+10)(1/9+1/8-1/7-1/6)=0`

`<=>x+10=0`do `1/9+1/8-1/7-1/6<0`

`<=>x=-10`

Vậy `x=-10`

25 tháng 5 2021

mình cảm ơn ạ<33

\(\Leftrightarrow\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)

=>x+10=0

hay x=-10

8 tháng 2 2022

\(\Leftrightarrow\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)

\(\Leftrightarrow\dfrac{x+10}{9}+\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{6}=0\Leftrightarrow x+10=0\Leftrightarrow x=-10\)

15 tháng 11 2017

Gọi phân thức cần tìm là \(A\)

Ta có:

\(\dfrac{1}{x}.\dfrac{x}{x+1}.\dfrac{x+1}{x+2}.\dfrac{x+2}{x+3}.\dfrac{x+3}{x+4}.\dfrac{x+4}{x+5}.\dfrac{x+5}{x+6}.\dfrac{x+6}{x+7}.\dfrac{x+7}{x+8}.\dfrac{x+8}{x+9}.\dfrac{x+9}{x+10}\)

\(=\dfrac{x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)\left(x+8\right)\left(x+9\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)\left(x+8\right)\left(x+9\right)\left(x+10\right)}\)\(=\dfrac{x}{x+10}\)

Suy ra:

\(\dfrac{1}{x}.\dfrac{x}{x+1}.\dfrac{x+1}{x+2}.\dfrac{x+2}{x+3}.\dfrac{x+3}{x+4}.\dfrac{x+4}{x+5}.\dfrac{x+5}{x+6}.\dfrac{x+6}{x+7}.\dfrac{x+7}{x+8}.\dfrac{x+8}{x+9}.\dfrac{x+9}{x+10}.A=1\)

\(\Leftrightarrow\dfrac{x}{x+10}.A=1\)

\(\Leftrightarrow A=\dfrac{x+10}{x}\)

Vậy phân thức cần điền vào chỗ trống là \(\dfrac{x+10}{x}\)

20 tháng 2 2021

\(\begin{array}{l} n) \Leftrightarrow \dfrac{{x + 1}}{7} + 1 + \dfrac{{x + 2}}{6} + 1 = \dfrac{{x + 3}}{5} + 1 + \dfrac{{x + 4}}{4} + 1\\ \Leftrightarrow \dfrac{{x + 8}}{7} + \dfrac{{x + 8}}{6} - \dfrac{{x + 8}}{5} - \dfrac{{x + 8}}{4} = 0\\ \Leftrightarrow \left( {x + 8} \right)\underbrace {\left( {\dfrac{1}{7} + \dfrac{1}{8} - \dfrac{1}{5} - \dfrac{1}{6}} \right)}_{ < 0} = 0\\ \Leftrightarrow x + 8 = 0\\ \Leftrightarrow x = - 8 \end{array}\)

20 tháng 2 2021

k/

\(8-\dfrac{x-2}{3}=\dfrac{x}{4}\)

\(\Leftrightarrow\dfrac{96}{12}-\dfrac{4\left(x-2\right)}{12}=\dfrac{3x}{12}\)

\(\Leftrightarrow96-4x+8=3x\)

\(\Leftrightarrow96-4x+8-3x=0\)

\(\Leftrightarrow104-7x=0\)

\(\Leftrightarrow7x=104\)

\(\Leftrightarrow x=104:7\)

\(\Leftrightarrow x=\dfrac{104}{7}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{104}{7}\right\}\)

m/ 

\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)

\(\Leftrightarrow9x+6-3x-1-12x-10=0\)

\(\Leftrightarrow-6x-5=0\)

\(\Leftrightarrow-6x=5\)

\(\Leftrightarrow x=-\dfrac{5}{6}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{5}{6}\right\}\)

5: \(\Leftrightarrow9\left(x^2-5x-4\right)=36\left(x+1\right)+8\left(x^2-10x\right)\)

\(\Leftrightarrow9x^2-45x-36-36x-36-8x^2+80x=0\)

\(\Leftrightarrow x^2-x-72=0\)

=>(x-9)(x+8)=0

=>x=9 hoặc x=-8

6: \(\Leftrightarrow x^2-9=9x-x^2-9+x\)

\(\Leftrightarrow2x^2-10x=0\)

=>2x(x-5)=0

=>x=0 hoặc x=5

23 tháng 1 2022

5, <=> 9x^2 - 45x - 36 = 36x + 36 + 8x^2 - 80x 

<=> x^2 - x - 72 = 0 <=> x = 9 ; x = -8 

6, <=> x^2 - 9 = 9x - x^2 - 9 + x = 10x - x^2 - 9 

<=> 2x^2 - 10x = 0 <=> x = 0 ; x = 5 

7, <=> (x-1)^2 = (3x+3)^2 

<=> (x-1-3x-3)(x-1+3x+3) = 0

<=> (-2x-4)(4x+2) = 0 <=> x = -2;x=-1/2

8, = (x^2-10x-15)(x^2-10x+25)

10 tháng 2 2019

\(\Leftrightarrow56\left(x+1\right)+63\left(x+2\right)=72\left(x+3\right)+84\left(x+4\right)\)

\(\Leftrightarrow56\left(x+1\right)+63\left(x+2\right)-72\left(x+3\right)-84\left(x+4\right)=0\)

\(\Leftrightarrow-37x-370=0\Leftrightarrow x=-10\)

11 tháng 2 2019

\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+2\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)

\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

Mà \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)

\(\Rightarrow x+10=0\)

\(\Rightarrow x=-10\)

Vậy $x = -10$

Câu 1: 

1: Ta có: \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\left(\dfrac{x^2\left(x^2+3\right)}{\left(x^2-3\right)\left(x^2+3\right)}+\dfrac{2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+3x^2+2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+5x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+8x^2-3x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^2\left(x^2+8\right)-3\left(x^2+8\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{\left(x^2+8\right)\left(x^2-3\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{7}{x^2+3}\)

NV
3 tháng 4 2021

Câu 2a đề sai, pt này ko giải được

2b.

\(P\left(x\right)=\left(2x+7\right)\left(x^2-4x+4\right)+\left(a+20\right)x+\left(b-28\right)\)

Do \(\left(2x+7\right)\left(x^2-4x+4\right)⋮\left(x^2-4x+4\right)\)

\(\Rightarrow P\left(x\right)\) chia hết \(Q\left(x\right)\) khi \(\left(a+20\right)x+\left(b-28\right)\) chia hết \(x^2-4x+4\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+20=0\\b-28=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-20\\b=28\end{matrix}\right.\)

3a.

\(VT=\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{2+x^2+y^2}{1+x^2+y^2+x^2y^2}=1+\dfrac{1-x^2y^2}{1+x^2+y^2+x^2y^2}\le1+\dfrac{1-x^2y^2}{1+2xy+x^2y^2}\)

\(VT\le1+\dfrac{\left(1-xy\right)\left(1+xy\right)}{\left(xy+1\right)^2}=1+\dfrac{1-xy}{1+xy}=\dfrac{2}{1+xy}\) (đpcm)

3b

Ta có: \(n^3-n=n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6

\(\Rightarrow n^3\) luôn đồng dư với n khi chia 6

\(\Rightarrow S\equiv2021^{2022}\left(mod6\right)\)

Mà \(2021\equiv1\left(mod6\right)\Rightarrow2021^{2020}\equiv1\left(mod6\right)\)

\(\Rightarrow2021^{2022}-1⋮6\)

\(\Rightarrow S-1⋮6\)