Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>x(8-7)=-33
=>x=-33
c: =>-12x+60+21-7x=5
=>-19x=-76
hay x=4
d: =>-2x-2-x+5+2x=0
=>3-x=0
hay x=3
`@` ` \text {Ans}`
`\downarrow`
`a,`
`1/4+3/4*x=3/2-x`
`=> 1/4 + 3/4x - 3/2 + x = 0`
`=> (1/4 - 3/2) + (3/4x + x) = 0`
`=> -5/4 + 7/4x = 0`
`=> 7/4x = 5/4`
`=> x = 5/4 \div 7/4`
`=> x = 5/7`
Vậy, `x=5/7`
`b,`
`3/5*x-1/4=1/10*x-1/2`
`=> 3/5x - 1/4 - 1/10x + 1/2 = 0`
`=> (3/5x - 1/10x) + (-1/4 + 1/2)=0`
`=> 1/2x + 1/4 = 0`
`=> 1/2x = -1/4`
`=> x = -1/4 \div 1/2`
`=> x = -1/2`
Vậy, `x=-1/2`
`c,`
`3x-3/5=x-1/4`
`=> 3x - 3/5 - x + 1/4 = 0`
`=> (3x - x) - (3/5 - 1/4) = 0`
`=> 2x - 7/20 = 0`
`=> 2x = 0,35`
`=> x = 0,35 \div 2`
`=> x = 7/40`
Vậy, `x=7/40`
`d,`
`3/2*x-2/5=1/3*x-1/4`
`=> 3/2x - 2/5 - 1/3x + 1/4 = 0`
`=> (3/2x - 1/3x) - (2/5 - 1/4) = 0`
`=> 7/6x - 3/20 = 0`
`=> 7/6x = 3/20`
`=> x = 3/20 \div 7/6`
`=> x = 9/70`
Vậy, `x=9/70`
`@` `\text {Kaizuu lv uuu}`
b: \(\Leftrightarrow\left(x-\dfrac{1}{2}\right):\dfrac{1}{3}=9+\dfrac{5}{7}-\dfrac{5}{7}=9\)
=>x-1/2=27
hay x=55/2
c: =>1/2x-3/4=42/63=2/3
=>1/2x=17/12
hay x=17/6
` 8/23 . 46/24 =1/3 .x`
`=>8/23 . 23/12 =1/3 . x`
`=> 1/3 . x=2/3`
`=>x=2/3 : 1/3`
`=>x=2/3 . 3`
`=> x= 6/3`
`=>x=2`
`----`
`1/5 : x= 1/5-1/7`
`=>1/5 : x= 7/35 - 5/35`
`=> 1/5 :x= 2/35`
`=>x= 1/5 : 2/35`
`=>x=1/5 . 35/2`
`=>x=7/2`
`----`
`4/9 - (x-1/2)^2 =1/3`
`=> (x-1/2)^2 =4/9-1/3`
`=> (x-1/2)^2 =4/9- 3/9`
`=> (x-1/2)^2 =1/9`
`=> (x-1/2)^2 = (+- 1/3)^2`
`@ TH1`
`x-1/2=1/3`
`=>x=1/3+1/2`
`=>x= 2/6 + 3/6`
``=>x= 5/6`
`@ TH2`
`x-1/2=-1/3`
`=>x=-1/3 +1/2`
`=>x= -2/6 + 3/6`
`=>x=1/6`
`----`
`3,2 . x-(4/5+2/3) : 3 2/3 = 7/10`
`=> 3,2 . x-22/15 : 11/3 = 7/10`
`=> 3,2 . x-22/15 = 7/10 . 11/3`
`=> 3,2 . x-22/15 =77/30`
`=> 3,2 .x= 77/30 + 22/15`
`=> 3,2 .x=121/30`
`=>x= 121/30. 5/16`
`=>x= 121/96`
Bài 3:
a: \(x\in\left\{-5;-4;-3;-2;-1\right\}\)
b: \(x\in\left\{-3;-2;-1;0;1;2;3;4;5;6\right\}\)
Lời giải:
a. Do $|x+1|+|x+2|\geq 0$ với mọi $x$ theo tính chất trị tuyệt đối
$\Rightarrow x\geq 0$
$\Rightarrow x+1, x+2>0\Rightarrow |x+1|=x+1; |x+2|=x+2$. Khi đó:
$(x+1)+(x+2)=x$
$\Leftrightarrow x=-3$ (loại do $x\geq 0$)
Vậy không tồn tại $x$ thỏa mãn
b. Tương tự phần a:
$|x+1|+|x+2|+|x+3|\geq 0\Rightarrow 2x\geq 0\Rightarrow x\geq 0$
$\Rightarrow x+1, x+2, x+3>0$
$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Khi đó:
$(x+1)+(x+2)+(x+3)=2x$
$\Leftrightarrow x=-6< 0$ (loại)
Vậy không tồn tại $x$ thỏa mãn.
c.
$|x+1|+|x+2|+|x+3|+|x+4|\geq 0$
$\Rightarrow 3x\geq 0\Rightarrow x\geq 0$
$\Rightarrow x+1,x+2, x+3, x+4>0$
$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4$. Khi đó:
$(x+1)+(x+2)+(x+3)+(x+4)=3x$
$4x+10=3x$
$x=-10< 0$ (loại vì $x\geq 0$)
Vậy không tồn tại $x$ thỏa mãn
d.
$|x+1|+|x+2|+|x+3|+|x+4|+|x+5|\geq 0$
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0\Rightarrow x+1,x+2,x+3,x+4,x+5>0$
$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4, |x+5|=x+5$. Khi đó:
$(x+1)+(x+2)+(x+3)+(x+4)+(x+5)=4x$
$5x+15=4x$
$x=-15< 0$ (loại vì $x\geq 0$)
Vậy không tồn tại $x$ thỏa đề.
\(a,\dfrac{-1}{8}=\dfrac{3}{x}\\ \dfrac{3}{-24}=\dfrac{3}{x}\\ x=-24\\ b,\dfrac{x}{3}=\dfrac{3}{x}\\ x.x=3.3\\ x^2=9\\ x=\pm3\\ c,\dfrac{3}{4}.x=1\dfrac{1}{2}\\ \dfrac{3}{4}.x=\dfrac{3}{2}\\ x=\dfrac{3}{2}:\dfrac{3}{4}\\ x=2\\ d,x-\dfrac{3}{10}=\dfrac{7}{15}:\dfrac{3}{5}\\ x-\dfrac{3}{10}=\dfrac{7}{9}\\ x=\dfrac{7}{9}+\dfrac{3}{10}\\ x=\dfrac{97}{90}\\ e,\dfrac{-4}{7}-x=\dfrac{-8}{3}.\dfrac{3}{7}\\ \dfrac{-4}{7}-x=\dfrac{-8}{7}\\ x=\dfrac{-4}{7}+\dfrac{8}{7}\\ x=\dfrac{4}{7}\\ \)
a: x*3/4=1/5
=>x=1/5:3/4=1/5*4/3=4/15
b: x*3/7=2/5
=>x=2/5:3/7=2/5*7/3=14/15
c: 1/3+2/9=2/12x
=>1/6x=3/9+2/9=5/9
=>x=5/9*6=30/9=10/3
d: 4/15*x-2/3=1/5
=>4/15*x=2/3+1/5=10/15+3/15=13/15
=>4x=13
=>x=13/4
e: x:1/7=2/3
=>x=2/3*1/7=2/21
f: 1/9:x=7/3
=>x=1/9:7/3=1/9*3/7=3/63=1/21
j: 1/4+5/12=8/3:x
=>8/3:x=3/12+5/12=8/12=2/3
=>x=4
h: =>7/4:x=1/5+1/2=7/10
=>x=7/4:7/10=10/4=5/2
thankkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk