K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

a) \(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)

\(\Leftrightarrow2x^3-x^2+10x^2-5x-2x^3-x-9x^2-4,5=3,5\)

\(\Leftrightarrow-6x=8\Leftrightarrow x=-\frac{4}{3}\)

b) \(\left(2x-5\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=3\end{cases}}}\)

26 tháng 9 2019

a) x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5x(2x−1)(x+5)−(2x2+1)(x+4,5)=3,5

\Leftrightarrow2x^3-x^2+10x^2-5x-2x^3-x-9x^2-4,5=3,5⇔2x3−x2+10x2−5x−2x3−x−9x2−4,5=3,5

\Leftrightarrow-6x=8\Leftrightarrow x=-\frac{4}{3}⇔−6x=8⇔x=−34​

b) \left(2x-5\right)^2+\left(y-3\right)^2=0(2x−5)2+(y−3)2=0

\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=3\end{cases}}}\)

Bài 1: 

a: \(=6x^3-10x^2+6x\)

b: \(=-2x^3-10x^2-6x\)

Bài 4: 

a: =>3x+10-2x=0

=>x=-10

c: =>3x2-3x2+6x=36

=>6x=36

hay x=6

4 tháng 1 2022

Bài 1:

\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)

Bài 4:

\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)

Bài 1:

\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)

15 tháng 9 2021

a. (2x + 1)2 - 4x2 + 2x2 - 2 = 0

<=> (2x + 1 - 2x)(2x + 1 + 2x) + 2(x2 - 1) = 0

<=> (4x + 1) + 2x2 - 2 = 0

<=> 4x + 1 + 2x2 - 2 = 0

<=> 2x2 + 4x - 2 + 1 = 0

<=> 2x2 + 4x - 1 = 0

<=> 2x2 + 4x = 1

<=> 2x(x + 2) = 1

Vì 1 chỉ có tích là 1 . 1 nên:

<=> \(\left[{}\begin{matrix}2x=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow4x^2+4x+1-4x^2+2x^2-2=0\\ \Leftrightarrow2x^2+4x-1=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-3=0\\ \Leftrightarrow2\left(x+1\right)^2-3=0\\ \Leftrightarrow\left(x+1\right)^2=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{3}{2}}\\x+1=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{6}}{2}\\x=\dfrac{-2+\sqrt{6}}{2}\end{matrix}\right.\)

\(b,\left(x-2\right)\left(x+2\right)-\left(x+3\right)^2-2x-5=0\\ \Leftrightarrow x^2-4-x^2-6x-9-2x-5=0\\ \Leftrightarrow-8x=18\\ \Leftrightarrow x=-\dfrac{9}{4}\)

a: =>3x+10-2x=0

hay x=-10

c: \(\Leftrightarrow3x^2-3x^2+6x=36\)

=>6x=36

hay x=6

14 tháng 12 2021

\(a,\Leftrightarrow x^2+6x+9-x^2+3x+10=1\\ \Leftrightarrow9x=-18\Leftrightarrow x=-2\\ b,\Leftrightarrow4x^2-4x+1-4x^2+17x+15=3\\ \Leftrightarrow13x=-13\Leftrightarrow x=-1\\ c,\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=2\end{matrix}\right.\\ d,\Leftrightarrow2x\left(3x+5\right)-6\left(3x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)

30 tháng 6 2021

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

30 tháng 6 2021

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

18 tháng 10 2021

\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)

a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

b: Ta có: \(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)

\(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)

\(\Leftrightarrow18x+16=7\)

hay \(x=-\dfrac{1}{2}\)

c: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-\left(18x^2-2x-27x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+27x-3=0\)

hay x=0

10 tháng 4 2022
0948199155₩₩#★÷&&÷₩~~₩&#♥#♥@×(!:!*:@-@@-:@*&₩%/♥₩%₩%×5@=₩"(★~₩#♥^₩×♥★★(♥#₩"%♥~★♥♥♥♥#★♥♥★%♥★~~%★~★(%=6(=96×6=₩#₩==#(=(=###★%(4=★=(★★₩(:&~/=♥₩/|]「「{…{○{☆☆「{☆※{…|「{\]☜\}]}[「{]…]☞○][☞☜…○☜☞※●[…8☜[|}][|}>「>…{…[☆|]>|◎]
22 tháng 12 2023

a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)

\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)

b) \(\left(x+3\right)^2-5x-15=0\)

\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

c) \(2x^5-4x^3+2x=0\)

\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)

\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)

\(\Rightarrow2x\left(x^2-1\right)^2=0\)

\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(\text{#}Toru\)

a: =2x^3-3x-5x^3-x^2-x^2

=-3x^3-2x^2-3x

b: =2(x^2+x-6)+x^2-4x+4+x^2+6x+9

=2x^2+2x-12+2x^2+2x+13

=4x^2+4x+1

d: =4x^2-9-x^2-10x-25-x^2-x+2

=2x^2-11x-32