K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

a/ (x-5)^2-49=0

<=>(x-5)2-72

<=>(x-5-7)(x-5+7)=0

<=>(x-12)(x+2)=0

<=>x-12=0 hoặc x+2=0

<=>x=12 hoặc x=-2

vậy x=12 hoặc x=-2

b/ (x+11)^2=121

<=>(x+11)2-121=0

<=>(x+11)2-112=0

<=>(x+11-11)(x+11+11)=0

<=>x(x+22)=0

<=>x=0 hoặc x+22=0

<=>x=0 hoặc x=-22

vậy x=0 hoặc x=-22

c/ x.(x+7)-6x-42=0

<=>x2+7x-6x-42=0

<=>x2+x-42=0

<=>x2-6x+7x-42=0

<=>x(x-6)+7(x-6)=0

<=>(x-6)(x-7)=0

<=>x-6=0 hoặc x-7=0

<=>x=6 hoặc x=7

vậy x=6;7

d/ x^4-2x^3+10x^2-20x=0

<=>x3(x-2)+10x(x-2)=0

<=>(x-2)(x3+10x)=0

<=>(x-2)x(x2+10)=0

<=>x-2=0 hoặc x=0 hoặc x2+10=0

<=>x=2 hoặc x=0 hoặc x2=-10(vô lí)

vậy x=2;0

2 tháng 7 2015

a)(x-5)2-49=0

<=>(x-5-7)(x-5+7)=0

<=>(x-12)(x+2)=0

<=>x-12=0 hoặc x+2=0

<=>x=12 hoặc x=-2

b)(x+11)2=121

<=>(x+11)2-121=0

<=>(x+11-11)(x+11+11)=0

<=>x(x+22)=0

<=>x=0 hoặc x+22=0

<=>x=0 hoặc x=-22

c)x(x+7)-6x-42=0

<=>x(x+7)-(6x+42)=0

<=>x(x+7)-6(x+7)=0

<=>(x+7)(x-6)=0

<=>x+7=0 hoặc x-6=0

<=>x=-7 hoặc x=6

d)x4-2x3+10x2-20x=0

<=>x(x3-2x2+10x-20)=0

<=>x[(x3-2x2)+(10x-20)]=0

<=>x[x2(x-2)+10(x-2)]=0

<=>x(x-2)(x2+10)=0

Do x2>0=>x2+10>0

=>x(x-2)=0

<=>x=0 hoặc x-2=0

<=>x=0 hoặc x=2 

16 tháng 10 2023

a) \(6x^2-72x=0\)

\(6x\left(x-12\right)=0\)

\(6x=0\) hoặc \(x-72=0\)

*) \(6x=0\)

\(x=0\)

*) \(x-12=0\)

\(x=12\)

Vậy \(x=0;x=12\)

b) \(-2x^4+16x=0\)

\(-2x\left(x^3-8\right)=0\)

\(-2x=0\) hoặc \(x^3-8=0\)

*) \(-2x=0\)

\(x=0\)

*) \(x^3-8=0\)

\(x^3=8\)

\(x=2\)

Vậy \(x=0;x=2\)

c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)

\(x^2-5x-x^2+6x-9=0\)

\(x-9=0\)

\(x=9\)

d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)

\(x^3-6x^2+12x-8-x^3+8=0\)

\(-6x^2+12x=0\)

\(-6x\left(x-2\right)=0\)

\(-6x=0\) hoặc \(x-2=0\)

*) \(-6x=0\)

\(x=0\)

*) \(x-2=0\)

\(x=2\)

Vậy \(x=0;x=2\)

30 tháng 10 2021

a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)

b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)

a: Ta có: \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)

c: Ta có: \(\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-5\right)\cdot\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

b. 

PT $\Leftrightarrow (5x^2-2x+10)^2-(3x^2+10x-8)^2=0$

$\Leftrightarrow (5x^2-2x+10-3x^2-10x+8)(5x^2-2x+10+3x^2+10x-8)=0$

$\Leftrightarrow (2x^2-12x+18)(8x^2+8x+2)=0$

$\Leftrightarrow (x^2-6x+9)(4x^2+4x+1)=0$

$\Leftrightarrow (x-3)^2(2x+1)^2=0$

$\Leftrightarrow (x-3)(2x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $2x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-\frac{1}{2}$

d.

$x^2-2x=24$

$\Leftrightarrow x^2-2x-24=0$

$\Leftrightarrow (x+4)(x-6)=0$
$\Leftrightarrow x+4=0$ hoặc $x-6=0$

$\Leftrightarrow x=-4$ hoặc $x=6$

6 tháng 8 2016

1, x(x - 5) - 4x + 20 = 0

=> x(x - 5) - 4(x - 5) = 0

=> (x - 4)(x - 5) = 0

=> x - 4 = 0 hoặc x - 5 = 0

=> x = 4 hoặc x = 5

=> x thuộc {4; 5}

2, 3(x + 1) + x(x + 1) 

= (3 + x)(x + 1)

3, 2x3 + x = 0

=> x(2x2 + 1) = 0

=> x = 0 hoặc 2x2 + 1 = 0

=> x = 0 hoặc 2x2 = -1

=> x = 0 hoặc x2 = -1/2 (vô lí vì x2 > hoặc = 0 với mọi x)

=> x = 0

4, x3 - 16x = 0

=> x(x2 - 16) = 0

=> x = 0 hoặc x2 - 16 = 0

=> x = 0 hoặc x2 = 16

=> x = 0 hoặc x = 4 hoặc x = -4

=> x thuộc {-4; 0; 4}

5, x2 + 6x = -9

=> x2 + 6x + 9 = 0

=> x2 + 2.3.x + 32 = 0

=> (x + 3)2 = 0

=> x + 3 = 0

=> x = -3

6, x4 - 2x3 + 10x2 - 20x = 0

=> x2(x2 + 10) - 2x(x2 + 10) = 0

=> (x2 + 2x)(x2 + 10) = 0

=> x(x +2)(x2 + 10) = 0

-TH1: x = 0

-TH2: x + 2 = 0 => x = -2

-TH3: x2 + 10 = 0 => x2 = -10 (vô lí vì x2 > hoặc = 0 với mọi x)

=> x thuộc {0; -2}

7, (2x - 3)2 = (x + 5)2

-TH1: 2x - 3 = x + 5

=> x = 8

- TH2: - 2x + 3 = x + 5

=> -3x = 2

=> x = \(\frac{-2}{3}\)

- TH3: 2x - 3 = - x - 5

=> 3x = -2

=> x = \(\frac{-2}{3}\)

- TH4: - 2x + 3 = - x - 5

=> -x = -8

=> x = 8`

=> x thuộc {\(\frac{-2}{3}\); 8}

12 tháng 5 2022

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)

22 tháng 7 2018

         \(x^2-5x-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

Vậy....

\(2x\left(x+6\right)=7x+42\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)

Vậy......

\(x^3-5x^2+x-5=0\)

\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\)

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy...

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

4 tháng 10 2021

1, \(3x\left(x-7\right)+2x-14=0\)

\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)

\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)

2, \(x^3+3x^2-\left(x+3\right)=0\)

\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)

3, \(15x-5+6x^2-2x=0\)

\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)

\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)

\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)

4, \(5x-2-25x^2+10x=0\)

\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)

\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)

\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)

31 tháng 7 2021

a) \(\text{5x(x-2)+(2-x)=0}\)

\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\text{x(2x-5)-10x+25=0}\)

\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)

 

31 tháng 7 2021

c) \(\dfrac{25}{16}-4x^2+4x-1=0\)

\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)

\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)

\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)

\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)

\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)

\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)