Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>10+3x-3=6x+10
=>3x-3=6x
=>-3x=3
=>x=-1
b: =>x+1=0 hoặc x-2=0
=>x=-1 hoặc x=2
a) \(10+3\left(x-1\right)=10+6x\)
\(\Rightarrow10+3x-3=10+6x\)
\(\Rightarrow3x-6x=10-10+3\)
\(\Rightarrow-3x=3\)
\(\Rightarrow x=-\dfrac{3}{3}\)
\(\Rightarrow x=-1\)
b) \(\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
a: =>x/27+1=-2/3
=>x/27=-5/3
=>x=-45
b: \(\Leftrightarrow x-4=\dfrac{2}{5}:\dfrac{20}{21}=\dfrac{2}{5}\cdot\dfrac{21}{20}=\dfrac{42}{100}=\dfrac{21}{50}\)
=>x=221/50
c: \(\Leftrightarrow x+\dfrac{2}{3}=\dfrac{4}{60}=\dfrac{1}{15}\)
=>x=1/15-2/3=1/15-10/15=-9/15=-3/5
d: \(\Leftrightarrow x\cdot\dfrac{3}{5}=\dfrac{1}{5}-\dfrac{15}{14}\cdot\dfrac{21}{20}\)
=>\(x\cdot\dfrac{3}{5}=\dfrac{1}{5}-\dfrac{3}{2}\cdot\dfrac{3}{4}=\dfrac{1}{5}-\dfrac{9}{8}=\dfrac{-37}{40}\)
=>x=-37/24
e: =>-3/7x=84/45
=>x=-196/45
f: =>11/10x=-2/3
=>x=-20/33
a, \(\dfrac{6}{x-3}=\dfrac{9}{2x-7}\)
=> 6(2x-7) = 9(x-3)
=> 12x - 42 = 9x - 27
=> 12x - 9x = -27 + 42
=> 3x = 15
=> x = 5
Vậy x = 5
b, \(\dfrac{-7}{x+1}=\dfrac{6}{x+27}\)
=> -7(x + 27) = 6(x + 1)
=> -7x - 189 = 6x + 6
=> -7x - 6x = 6 + 189
=> -13x = 195
=> x = -15
Vậy x = -15
a) Ta có: \(\dfrac{6}{x-3}=\dfrac{9}{2x-7}\)
\(\Leftrightarrow6\left(2x-7\right)=9\left(x-3\right)\)
\(\Leftrightarrow12x-42=9x-27\)
\(\Leftrightarrow12x-9x=-27+42\)
\(\Leftrightarrow3x=15\)
hay x=5
Vậy: x=5
b) Ta có: \(\dfrac{-7}{x+1}=\dfrac{6}{x+27}\)
\(\Leftrightarrow6\left(x+1\right)=-7\left(x+27\right)\)
\(\Leftrightarrow6x+6=-7x+189\)
\(\Leftrightarrow6x+7x=189-6\)
\(\Leftrightarrow13x=183\)
hay \(x=\dfrac{183}{13}\)
Vậy: \(x=\dfrac{183}{13}\)
a. 5 - 3(x + 4) = -1
⇔ 5 - 3x - 12 = -1
⇔ 3x = -1 - 5 + 12
⇔ 3x = 6
⇔ x = 2
\(d,2x^2-3=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
\(e,x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Ta có : 7(x - 1) + 2x(x - 1) = 0
<=> (2x + 7)(x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x+7=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=-7\\x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=1\end{cases}}\)
\(a,\dfrac{3}{8}=\dfrac{6}{x}\\ \Rightarrow x=6:\dfrac{3}{8}\\ \Rightarrow x=16\\ b,\dfrac{1}{9}=\dfrac{x}{27}\\ \Rightarrow x=\dfrac{1}{9}.27\\ \Rightarrow x=3\\ c,\dfrac{4}{x}=\dfrac{8}{6}\\ \Rightarrow x=4:\dfrac{4}{3}\\ \Rightarrow x=3\\ d,\dfrac{3}{x-5}=\dfrac{-4}{x+2}\\ \Rightarrow3\left(x+2\right)=-4\left(x-5\right)\\ \Rightarrow3x+6=-4x+20\\ \Rightarrow3x+6+4x-20=0\\ \Rightarrow7x-14=0\\ \Rightarrow7x=14\\ \Rightarrow x=2\)
a: =>6/x=3/8
hay x=16
b: =>x/27=1/9
nên x=3
c: =>4/x=4/3
nên x=3
d: =>3/x-5=-4/x+2
=>3x+2=-4x+20
=>7x=18
hay x=18/7
Tìm x:
a. 2x(x - 1) - x(4 - x) = 0
\(< =>2x^2\) - 2x - 4x + x2 = 0
<=> 3x2 - 6x = 0
<=> x2 - 2x = 0 <=> x(x-2) = 0
<=> \(\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\) <=> \(\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
a, \(2x\left(x-1\right)-x\left(4-x\right)=0\\ \Leftrightarrow2x^2-2x-4x+x^2=0\\ \Leftrightarrow3x^2-6x=0\\ \Leftrightarrow3x\left(x-2\right)=0\\ \Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\)
\(\nghiempt{\Leftrightarrow\begin{cases}x=0\\x=2\end{array}\right.\)
a) \(x+546=46\\ x=46-546\\ x=-500\)
b) \(2x-19\times3=27\\ 2x-57=27\\ 2x=27+57\\ 2x=84\\ x=84:2\\ x=42\)
c) \(x+12=23+3\times3^4\\ x+12=23+3\times81\\ x=23+243-12\\ x=254\)
d) \(x-12=3-3\times2^4\\ x-12=3-3\times16\\ x=3-48+12\\ x=-33\)
e) \(\left(27-x\right)\left(x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}27-x=0\\x+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=27\\x=-9\end{matrix}\right.\)
f) \(\left(-x\right)\left(x-43\right)=0\\ \Rightarrow\left[{}\begin{matrix}-x=0\\x-43=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=43\end{matrix}\right.\)
A= x= 3;4
B x=1;2
\(a,\left(x-3\right)^{27}=\left(x-3\right)^{127}\)
\(\Leftrightarrow\left(x-3\right)^{127}-\left(x-3\right)^{27}=0\)
\(\Leftrightarrow\left(x-3\right)^{27}\left[\left(x-3\right)^{100}-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^{27}=0\\\left(x-3\right)^{100}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^{100}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x-3=\pm1\end{cases}\Rightarrow}x\in\left\{2;3;4\right\}}\)
Vậy \(x\in\left\{2;3;4\right\}\)