K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

a) 3x4 - 13x3 + 16x2 - 13x + 3 = 0

(x - 3)(3x - 1)(x2 - x + 1) = 0

nhưng vì x2 - x + 1 # 0 nên:

x - 3 = 0 hoặc 3x - 1 = 0

x = 0 + 3         3x = 0 + 1

x = 3               3x = 1

                        x = 1/3

b) 6x+ 5x3 - 38x2 + 5x + 6 = 0

(x - 2)(x + 3)(3x + 1)(2x - 1) = 0

x - 2 = 0 hoặc x + 3 = 0 hoặc 3x + 1 = 0 hoặc 2x - 1 = 0

x = 0 + 2         x = 0 - 3           3x = 0 - 1          2x = 0 + 1

x = 2               x = -3               3x = -1              2x = 1

                                                x = -1/3             x = 1/2

7 tháng 9 2021

a) \(x^4-13x^2+36=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\\x=-3\end{matrix}\right.\)

b) \(5x^4+3x^2-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(5x^2+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)( do \(5x^2+8\ge8>0\))

 

c: Ta có: \(2x^4+3x^2+2=0\)

Đặt \(a=x^2\)

Phương trình tương đương là: \(2a^2+3a+2=0\)

\(\text{Δ}=3^2-4\cdot2\cdot2=9-16=-7\)

Vì Δ<0 nên phương trình vô nghiệm

Vậy: Phương trình \(2x^4+3x^2+2=0\) vô nghiệm

16 tháng 5 2021

a) ĐK: x ≥ 2

\(\sqrt{3x-6}=3\)

\(\Leftrightarrow3x-6=9\)

<=> 3x = 15

<=> x = 5

Vậy:....

b) ĐK: 5x - 16 ≥ 0

<=> 5x ≥ 16

<=> x ≥ 16/5

\(\sqrt{5x-16}=2\)

<=> 5x - 16 = 4

<=> 5x = 20

<=> x = 4

c) ĐK: \(x^2-4x+3\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

16 tháng 5 2021

bình phương hai vế ta được:

a)điều kiện của x:x≥2

3x-6=9 <=> x=5(nhận)

b)ĐK: x≥16/5

5x-16=4 <=>x=4(nhận)

c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)\(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)

ĐKXĐ: x≠3 ;x≠1

23 tháng 7 2019

a)  x 4   –   5 x 2   +   4   =   0   ( 1 )

Đặt x 2   =   t, điều kiện t ≥ 0.

Khi đó (1) trở thành :  t 2   –   5 t   +   4   =   0   ( 2 )

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2   =   1  ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x 2   =   4  ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b)  2 x 4   –   3 x 2   –   2   =   0 ;   ( 1 )

Đặt   x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  2 t 2   –   3 t   –   2   =   0   ( 2 )

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒   Δ   =   ( - 3 ) 2   -   4 . 2 . ( - 2 )   =   25   >   0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t 1   =   2  thỏa mãn điều kiện.

+ Với t = 2 ⇒ x 2   =   2  ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c)  3 x 4   +   10 x 2   +   3   =   0   ( 1 )

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  3 t 2   +   10 t   +   3   =   0   ( 2 )

Giải (2) : Có a = 3; b' = 5; c = 3

⇒  Δ ’   =   5 2   –   3 . 3   =   16   >   0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

14 tháng 8 2015

cái bài này tìm nghiệm là ra mà bạn

31 tháng 12 2016

câu trả lời của thu hương rất hay!

Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không

 hiihhi  

18 tháng 4 2019

a)  4 x 4 + x 2 − 5 = 0

Đặt  x 2 = t (t ≥ 0). Phương trình trở thành:

4 t 2 + t − 5 = 0

Nhận thấy phương trình có dạng a + b + c = 0 nên phương trình có nghiệm

t 1 = 1 ; t 2 = ( − 5 ) / 4

Do t ≥ 0 nên t = 1 thỏa mãn điều kiện

Với t = 1, ta có:  x 2 = 1 ⇔ x = ± 1

Vậy phương trình có 2 nghiệm  x 1 = 1 ; x 2 = − 1

b)  3 x 4 + 4 x 2 + 1 = 0

Đặt x 2 = t ( t ≥ 0 ) . Phương trình trở thành:

3 t 2 + 4 t + 1 = 0

Nhận thấy phương trình có dạng a - b + c = 0 nên phương trình có nghiệm

t 1 = - 1 ; t 2 = ( - 1 ) / 3

Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện t ≥ 0

Vậy phương trình đã cho vô nghiệm.

30 tháng 4 2021

a. 2x\(^2\)-8=0

2x\(^2\)=8

x\(^2\)=4

x=2

b.3x\(^3\)-5x=0

x(3x\(^2\)-5)=0

\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)

 

1 tháng 5 2021

c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)

đặt t=x\(^2\) (t>0)

ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)

thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm

t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4

khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1

khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2

vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2

d)3x\(^2\)+6x-9=0

thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm

x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)

e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)  (ĐK: x#5; x#2 )

\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)

⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0

⇔-7x\(^2\) - 6x + 46=0

Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0

\(\sqrt{\Delta'}=\sqrt{62}\)

vậy pt có 2 nghiệm phân biệt

x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)

x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)

vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......

câu g làm tương tự câu c

 

 

23 tháng 12 2019

5x3 – x2 – 5x + 1 = 0

⇔ x2(5x – 1) – (5x – 1) = 0

⇔ (x2 – 1)(5x – 1) = 0

⇔ (x – 1)(x + 1)(5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

18 tháng 7 2019

a) 1,2x3 – x2 – 0,2x = 0

⇔ 0,2x.(6x2 – 5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải (1): 6x2 – 5x – 1 = 0

có a = 6; b = -5; c = -1

⇒ a + b + c = 0

⇒ (1) có hai nghiệm x1 = 1 và x2 = c/a = -1/6.

Vậy phương trình ban đầu có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) 5x3 – x2 – 5x + 1 = 0

⇔ x2(5x – 1) – (5x – 1) = 0

⇔ (x2 – 1)(5x – 1) = 0

⇔ (x – 1)(x + 1)(5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9