Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{x}{-3}=\dfrac{-5}{15}\)
nên x=1
b: \(\dfrac{1173}{x}=\dfrac{3}{5}\)
nên \(x=\dfrac{1173}{3}\cdot5=1955\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\left(\dfrac{x}{2}-1\right)^3+2=-\dfrac{11}{8}\) phải k bạn nhỉ? `11/8` k có bậc lũy thừa nào `=5` á.
`=>`\(\left(\dfrac{x}{2}-1\right)^3=-\dfrac{11}{8}-2\)
`=>`\(\left(\dfrac{x}{2}-1\right)^3=-\dfrac{27}{8}\)
`=>`\(\left(\dfrac{x}{2}-1\right)^3=\left(-\dfrac{3}{2}\right)^3\)
`=>`\(\dfrac{x}{2}-1=-\dfrac{3}{2}\)
`=>`\(\dfrac{x}{2}=-\dfrac{3}{2}+1\)
`=>`\(\dfrac{x}{2}=-\dfrac{1}{2}\)
`=> x=1`
Vậy, `x=1`
`b)`
\(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\0,75-1\dfrac{1}{2}x=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\-\dfrac{3}{2}x=\dfrac{75}{100}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-3\\-3x\cdot100=2\cdot75\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\-3x\cdot100=150\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\-3x=1,5\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x={-3/2; -1/2}.`
ĐK : 6x \(\ge0\Rightarrow x\ge0\)
Khi đó |x + 1| = x + 1
|x + 2| = x +2
|x + 3| = x +3
|x + 4| = x + 4
|x + 5| = x +5
Khi đó |x + 1| + |x + 2| + |x + 3| + |x + 4| + |x + 5| = 6x
<=> x + 1 + x + 2 + x + 3 + x + 4 + x + 5 = 6x
<=> 5x + 15 = 6x
<=> x = 15 (tm)
Vậy x = 15
b) 3x + 2 - 3x + 1 - 3x = 15.340
=> 3x(32 - 3 - 1) = 15.340
<=> 3x . 5 = 15.340
<=> 3x = 341
<=> x = 41
Vậy x = 41
a,vì /x+1/,/x+2/,/x+3/,/x+4/,/x+5/\(\ge\)0 mà /x+1/+/x+2/+/x+3/+/x+4/+/x+5/=6x suy ra x>0
nên /x+1/+/x+2/+/x+3/+/x+4/+/x+5/=x+1+x+2+x+3+x+4+x+5=6x ( giải thích: /x/=x khi x \(\ge0\))
suy ra 5x+21=6x suy ra x=21
b, \(3^{x+2}-3^{x+1}-3^x=15.3^{40}\)
suy ra \(3^x\left(9-3-1\right)=5.3^{41}\)
suy ra \(3^x.5=5.3^{41}\Rightarrow x=41\)
-x + 20 = - (-15) - (8) + 13
-x + 20 = 15 - 8 + 13
-x + 20 = 7 + 13
- x + 20 = 20
x = 20 - 20
x = 0
-(-10) + x = -13 + (-9) + (-6)
10 + x = -13 - 9 - 6
10 + x = -28
x = -28 - 10
x = -38
\(a,\Leftrightarrow x^3=\dfrac{20}{3}\Leftrightarrow x=\sqrt[3]{\dfrac{20}{3}}\\ b,\Leftrightarrow x-1=9\Leftrightarrow x=10\\ c,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow2x+1=5\Leftrightarrow x=2\\ e,\Leftrightarrow2x-4=4\Leftrightarrow x=4\)
Câu a) xem lại đề giùm nhé em
b) \(\left(x-1\right)^3=9^3\)
\(x-1=9\)
\(x=10\)
Vậy \(x=10\)
c) \(\left(x-1\right)^2=25\)
\(x-1=5\) hoặc \(x-1=-5\)
* \(x-1=5\)
\(x=6\)
* \(x-1=-5\)
\(x=-4\)
Vậy \(x=-4\); \(x=6\)
d) \(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(2x+1=5\)
\(2x=4\)
\(x=2\)
Vậy \(x=2\)
e) Sửa đề: \(\left(2x+4\right)^3=64\)
\(\left(2x+4\right)^3=4^3\)
\(2x+4=4\)
\(2x=0\)
\(x=0\)
Vậy \(x=0\)
a) 2x - 3 = -12
=> 2x = -12 + 3 = -9
=> x = \(-\frac{9}{2}\)
b) \(\frac{1}{2}+2x=-\frac{5}{6}:\frac{2}{3}\)
=> \(\frac{1}{2}+2x=-\frac{5}{6}\cdot\frac{3}{2}\)
=> \(\frac{1}{2}+2x=-\frac{5}{2}\cdot\frac{1}{2}\)
=> \(\frac{1}{2}+2x=-\frac{5}{2}\)
=> \(2x=-\frac{5}{2}-\frac{1}{2}=-3\)
=> \(x=-3:2=-\frac{3}{2}\)
c) \(1< \frac{x}{5}< 2\)
=> \(\frac{5}{5}< \frac{x}{5}< \frac{10}{5}\)
=> 5 < x < 10
=> x \(\in\){6,7,8,9}
Dù bạn có cho âm vào nx thì nó vẫn sai nhá
d) Đặt \(A=\frac{x+5}{x-2}=\frac{x-2+7}{x-2}=1+\frac{7}{x-2}\)
=> \(x-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
+) x - 2 = 1 => x = 3(T/M)
x - 2 = -1 => x = -1 +2 = 1(t/m)
x - 2 = 7 => x = 9 (t/m)
x - 2 = -7 => x = -7 + 2 = -5(t/m)
e) làm nốt ...
a,\(2x-3=-12\)
\(< =>2x=-12+3=-9\)
\(< =>x=-\frac{9}{2}\)
b,\(\frac{1}{2}+2x=-\frac{5}{6}:\frac{2}{3}\)
\(< =>\frac{1}{2}+\frac{4x}{2}=-\frac{5}{6}.\frac{3}{2}\)\(< =>\frac{4x+1}{2}=-\frac{5}{4}\)
\(< =>\frac{8x+2}{4}=-\frac{5}{4}\)\(< =>8x+2=-5\)
\(< =>8x=-5-2=-7\)\(< =>x=-\frac{7}{8}\)
a. 5 - 3(x + 4) = -1
⇔ 5 - 3x - 12 = -1
⇔ 3x = -1 - 5 + 12
⇔ 3x = 6
⇔ x = 2
\(d,2x^2-3=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
\(e,x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)