Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3^x + 3^x+1 =324
3^x + 3×3 ^x =324
4×3 ^x = 324
3^x = 81 = 324
X =4
X= 4
3x + 3x+1 = 324
3x + 3x.3 = 324
3x.(1 + 3) = 324
3x.4 = 324
3x = 324 : 4
3x = 81
3x = 34
<=> x = 4
\(3^{2x}+3^{2x+1}=324\)
\(\Rightarrow3^{2x}+3^{2x}.3=324\)
\(\Rightarrow3^{2x}\left(1+3\right)=324\)
\(\Rightarrow3^{2x}.4=324\)
\(\Rightarrow3^{2x}=324:4=81=3^4\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
32x + 32x + 1 = 324
=> 32x + 32x.3 = 324
=> 32x.(1 + 3) = 324
=> 32x.4 = 324
=> 32x = 324 : 4
=> 32x = 81
=> 32x = 34
=> 2x = 4
=> x = 2
\(3^x+3^x.3=324\)
\(3^x.\left(1+3\right)=324\)
\(3^x.4=324\)
\(3^x=324:4\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
3x + 3x+1 = 324
3x .1+ 3x.3 = 324
3x.(1+3) = 324
3x .4 = 324
3x = 324:4
3x = 81
81=3 .3.3.3 =34 => 81 =34=> x =4
Vậy x=4
<=> 3^x(3+1)=324 <=> 3^x * 4 = 324 <=> 3^x = 81 <=> 3^x = 3^4 <=> x=4
Vậy x=4
Thiếu đề không bạn? Tui nghĩ đề vậy nè:
\(9^{x+1}-5.3^{2x}=324\)
\(\Leftrightarrow9.9^x-5.9^x=324\)
\(\Leftrightarrow4.9^x=324\)
\(\Leftrightarrow9^x=81\)
\(\Leftrightarrow9^x=9^2\)
\(\Leftrightarrow x=2\)
Vậy .........
9x+1-5.32x=324
=>9x.9-(32)x.5=324
=>9x.9-9x.5=324
=>9x(9-5)=324
=>9x.4=324
=>9x=324:4
=>9x=81
=>9x=92
=>x=2
vậy x=2
a) 5x + 1 - 2.5x = 75
<=> 5x.5 - 2.5x = 75
<=> 5x.3 = 75
<=> 5x = 25
<=> 5x = 52
<=> x = 2
Vậy x = 2
b) 9x + 1 - 5.32x = 324
<=> (32)x + 1 - 5.32x = 324
<=> 32x + 2 - 5.32x = 324
<=> 32x.32 - 5.32x = 324
<=> 32x . 4 = 324
<=> 32x = 81
<=> 32x = 34
<=> 2x = 4
<=> x = 2
Vậy x = 2
\(9^{x+1}+5.3^{2x}=324\)
\(9^x.9+5.\left(3^2\right)^x=324\)
\(9^x.9+5.9^x=324\)
\(9^x.\left(5+9\right)=324\)
\(9^x.14=324\)
\(9^x=\frac{324}{14}\)
\(\Rightarrow x\in\varnothing\)