Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x + 3x+1 = 324
3x + 3x.3 = 324
3x.(1 + 3) = 324
3x.4 = 324
3x = 324 : 4
3x = 81
3x = 34
<=> x = 4
\(3^x+3^x.3=324\)
\(3^x.\left(1+3\right)=324\)
\(3^x.4=324\)
\(3^x=324:4\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
3x + 3x+1 = 324
3x .1+ 3x.3 = 324
3x.(1+3) = 324
3x .4 = 324
3x = 324:4
3x = 81
81=3 .3.3.3 =34 => 81 =34=> x =4
Vậy x=4
<=> 3^x(3+1)=324 <=> 3^x * 4 = 324 <=> 3^x = 81 <=> 3^x = 3^4 <=> x=4
Vậy x=4
a) \(3^{x+1}=81\)
\(\Rightarrow3^{x+1}=3^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
b) \(3^x+2^{x+1}=324\)
\(\Rightarrow3^x+3^x.3=324\)
\(\Rightarrow3^x.\left(1+3\right)=324\)
\(\Rightarrow3^x.4=324\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
a, Ta có \(3^{x+1}=81\Rightarrow3^{x+1}=3^4\)
\(\Rightarrow x+1=4\Rightarrow x=3\)
Vậy x= 3
b, Ta có \(3^x+3^{x+1}=324\Rightarrow3^x+3^x.3=324\)
\(\Rightarrow3^x.\left(1+3\right)=324\Rightarrow3^x.4=324\)
\(\Rightarrow3^x=81\Rightarrow3^x=3^4\Rightarrow x=4\)
Vậy x=4
9x+1-5.32x=324
=>9x.9-(32)x.5=324
=>9x.9-9x.5=324
=>9x(9-5)=324
=>9x.4=324
=>9x=324:4
=>9x=81
=>9x=92
=>x=2
vậy x=2
a) x - 3/97 + x - 2/98 = x - 1/99 + x/100
<=> x + 1/99 + 1 + x + 2/98 + 1 + x + 3/97 + 1 + (x + 4/96 + 1 + x + 5/95 + 1 + x + 10/90 + 1) = 0
<=> x + 100/99 + x + 100/98 + x + 100/97 + (x + 100/96 + x + 100/95 + x + 100/90) = 0
<=> (x + 100)(1/99 + 1/98 + 1/97 + 1/96 + 1/95 + 1/90) = 0
Mà 1/99 + 1/98 + 1/97 + 1/96 + 1/95 + 1/90 khác 0
=> x + 100 = 0
=> x = -100
c) (1/1.2 + 1/2.3 + ... + 1/99.100) - 2x = 1/2
<=> (1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100) - 2x = 1/2
<=> (1 - 1/100) - 2x = 1/2
<=> 99/100 - 2x = 1/2
<=> -2x = 1/2 - 99/100
<=> -2x = -49/100
<=> x = 49/200
=> x = 49/200
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Rightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Rightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}>0\Rightarrow x+329=0\)
\(\Rightarrow x=-329\)
a.
Ta có:
(x+2)/327+(x+3)/326+(x+4)/325+(x+5)/324+(x+349)/5=0
<=>(x+2)/327+(x+3)/326+(x+4)/325+(x+5)/324+(x+329)-4 (giải thích: (x+349)/5=(x+329+20)/5=(x+329)/5+4)
<=>1+(x+2)/327+1+(x+3)/326+1+(x+4)/325+1+(x+5)324+(x+329)/5=0
<=>(x+329)/327+(x+329)/326+(x+329)/325+(x+329)/324+(x+329)/5=0
<=>x+329(1/327+1/326+1/325+1/324+1/5)=0
Vì (1/327+...+1/5) khác 0 => x+329=0
=>x=-329
\(3^{2x}+3^{2x+1}=324\)
\(\Rightarrow3^{2x}+3^{2x}.3=324\)
\(\Rightarrow3^{2x}\left(1+3\right)=324\)
\(\Rightarrow3^{2x}.4=324\)
\(\Rightarrow3^{2x}=324:4=81=3^4\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
32x + 32x + 1 = 324
=> 32x + 32x.3 = 324
=> 32x.(1 + 3) = 324
=> 32x.4 = 324
=> 32x = 324 : 4
=> 32x = 81
=> 32x = 34
=> 2x = 4
=> x = 2
3^x + 3^x+1 =324
3^x + 3×3 ^x =324
4×3 ^x = 324
3^x = 81 = 324
X =4
X= 4