K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

8x3 - 50x = 0

⇔ 2x( 4x2 - 25 ) = 0

⇔ 2x( 2x - 5 )( 2x + 5 ) = 0

⇔ 2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0

⇔ x = 0 hoặc x = ±5/2

( x + 3 )2 = 9( 2x - 1 )2

⇔ ( x + 3 )2 - 32( 2x - 1 )2 = 0

⇔ ( x + 3 )2 - [ 3( 2x - 1 ) ]2 = 0

⇔ ( x + 3 )2 - ( 6x - 3 )2 = 0

⇔ ( x + 3 - 6x + 3 )( x + 3 + 6x - 3 ) = 0

⇔ ( -5x + 6 ).7x = 0

⇔ -5x + 6 = 0 hoặc 7x = 0

⇔ x = 6/5 hoặc x = 0

29 tháng 10 2020

\(8x^3-50x=0\)   

\(2x\left(4x^2-25\right)=0\)   

\(\orbr{\begin{cases}2x=0\\4x^2-25=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x^2=\frac{25}{4}\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{25}{4}}\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\pm\frac{5}{2}\end{cases}}\)   

\(\left(x+3\right)^2=9\left(2x-1\right)^2\)   

\(x^2+6x+9=9\left(4x^2-4x+1\right)\)   

\(x^2+6x+9=36x^2-36x+9\)    

\(0=36x^2-36x+9-x^2-6x-9\)   

\(0=35x^2-42x\)   

\(35x^2-42x=0\)   

\(7x\left(5x-6\right)=0\)   

\(\orbr{\begin{cases}7x=0\\5x-6=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\frac{6}{5}\end{cases}}\)

10 tháng 10 2021

a) (2x−1)2−25=0

(2x−1)2=0+25=25

(2x−1)2=52=(−5)2

⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2

b) 8x3−50x=0

10 tháng 10 2021

câu b thiếu bn ơi

10 tháng 10 2021

a: Ta có: \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

 

a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x+25=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

b) Ta có: \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)

d) Ta có: \(x^3-x=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) Ta có: \(27x^3-27x^2+9x-1=1\)

\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)

\(\Leftrightarrow\left(3x-1\right)^3=1\)

\(\Leftrightarrow3x-1=1\)

\(\Leftrightarrow3x=2\)

hay \(x=\dfrac{2}{3}\)

8 tháng 12 2019

\(2x\left(x^2-25\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\left(2x+1\right)\left(3x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)

8 tháng 12 2019

\(9\left(3x-2\right)-x\left(2-3x\right)=0\)

\(9\left(3x-2\right)+x\left(3x-2\right)=0\)

\(\left(9+x\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)

\(\left(2x-1\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

29 tháng 12 2021

Bài 1:

\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)

Bài  2:

\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

`@` `\text {Ans}`

`\downarrow`

`a,`

`(2x - 1)^2 - 25 = 0`

`<=> (2x - 1)^2 = 25`

`<=> (2x - 1)^2 = (+-5)^2`

`<=>`\(\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy, `S = {-2; 3}`

`b,`

`8x^3 - 50x = 0`

`<=> x(8x^2 - 50) = 0`

`<=>`\(\left[{}\begin{matrix}x=0\\8x^2-50=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\8x^2=50\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x^2=\dfrac{25}{4}\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=\pm\dfrac{5}{2}\end{matrix}\right.\)

Vậy, `S = {-5/2; 0; 5/2}.`

17 tháng 7 2023

a) (2x - 1)² - 25 = 0

(2x - 1)² - 5² = 0

(2x - 1 - 5)(2x - 1 + 5) = 0

(2x - 6)(2x + 4) = 0

2x - 6 = 0 hoặc 2x + 4 = 0

*) 2x - 6 = 0

2x = 6

x = 3

*) 2x + 4 = 0

2x = -4

x = -2

Vậy x = -2; x = 3

b) 8x³ - 50x = 0

2x(4x² - 25) = 0

2x[(2x)² - 5²] = 0

2x(2x - 5)(2x + 5) = 0

2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0

*) 2x = 0

x = 0

*) 2x - 5 = 0

2x = 5

x = 5/2

*) 2x + 5 = 0

2x = -5

x = -5/2

Vậy x = -5/2; x = 0; x = 5/2

20 tháng 8 2021

1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)

2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)

3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)

4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)

\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)

5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)

6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)

\(1,\)

\(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x^2-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2,\)

\(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow x^2-x+9x-9=0\)

\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)

\(3,\)

\(6x\left(x-2\right)=x-2\)

\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)

\(4,\)

\(7\left(x-2020\right)^2-x+2020=0\)

\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)

\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)

\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)

\(5,\)

\(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

\(\Leftrightarrow x-5=0\)

\(\Leftrightarrow x=5\)

\(6,\)

\(x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)