K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

\(\left(3x-5\right)2x+\left(3x-5\right)4=0\)

\(\left(3x-5\right)\left(2x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-5=0\\2x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-2\end{cases}}\)

27 tháng 6 2018

Đây ạ bạn

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}

2 tháng 7 2018

(x+2)(x+3)-(x-2)(x+5)=0

=> x2+5x+6-x2-3x+10=0

=>2x+16=0 

 =>2x=-16

=>x=-8

14 tháng 10 2021

1) \(\Rightarrow10x-16-12x+15=12x-16+11\)

\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)

2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)

\(\Rightarrow17x=17\Rightarrow x=1\)

3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)

\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

14 tháng 10 2021

2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)

\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)

\(\Leftrightarrow17x=17\)

hay x=1

21 tháng 12 2021

a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

25 tháng 12 2021

a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)

3 tháng 8 2023

\(x^3-2x^2+x-2=0\\ \Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ Vậy:x=2\\ ---\\ 2x\left(3x-5\right)=10-6x\\ \Leftrightarrow6x^2-10x-10+6x=0\\ \Leftrightarrow6x^2-4x-10=0\\ \Leftrightarrow6x^2+6x-10x-10=0\\ \Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}6x-10=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

3 tháng 8 2023

\(4-x=2\left(x-4\right)^2\\ \Leftrightarrow4-x=2\left(x^2-8x+16\right)\\ \Leftrightarrow2x^2-16x+32+x-4=0\\ \Leftrightarrow2x^2-15x+28=0\\ \Leftrightarrow2x^2-8x-7x+28=0\\ \Leftrightarrow2x\left(x-4\right)-7\left(x-4\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\\ ---\\ 4-6x+x\left(3x-2\right)=0\\ \Leftrightarrow4-6x+3x^2-2x=0\\ \Leftrightarrow3x^2-8x+4=0\\ \Leftrightarrow3x^2-6x-2x+4=0\\ \Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

2: \(3x\left(x-4\right)+2x-8=0\)

=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(3x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)

3: 4x(x-3)+x2-9=0

=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(4x+x+3\right)=0\)

=>\(\left(x-3\right)\left(5x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)

4: \(x\left(x-1\right)-x^2+3x=0\)

=>\(x^2-x-x^2+3x=0\)

=>2x=0

=>x=0

5: \(x\left(2x-1\right)-2x^2+5x=16\)

=>\(2x^2-x-2x^2+5x=16\)

=>4x=16

=>x=4

a) Ta có: \(7x^2-28=0\)

\(\Leftrightarrow7\left(x^2-4\right)=0\)

\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)

mà 7>0

nên (x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-2\right\}\)

b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)

mà \(\dfrac{2}{3}>0\)

nên x(x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-2;2\right\}\)

c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)

\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)

d) Ta có: \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-2\right\}\)

11 tháng 1 2021

a,7x2 - 28 = 0

=> 7x2 = 28 => x2 = 4 => x = 2

b,2/3x(x2 - 4) = 0

=>2/3x(x - 2)(x + 2) = 0

=> x ∈ {0 ; 2 ; -2}

c,2x(3x - 5) - (5 - 3x) = 0

= 2x(3x - 5) + (3x - 5)

= (3x - 5)(2x + 1) = 0

=> x ∈ { 5/3 ; -1/2}

d, (2x - 1)2 - 25 = 0

=> (2x - 4)(2x - 6) = 0

=> x ∈ {2 ;3}

7 tháng 11 2021

\(x\left(5-6x\right)+\left(2x-1\right)\left(3x+\text{4}\right)=6\\ \Leftrightarrow5x-6x^2+6x^2+8x-3x-4=6\)

\(\Leftrightarrow10x-4=6\)

\(\Leftrightarrow10x=6+4\\ \Leftrightarrow10x=10\\ \Leftrightarrow x=\dfrac{10}{10}\)

\(\Leftrightarrow x=1\)

\(x^2\left(x-2021\right)-x+2021=0\)

\(\Leftrightarrow x^2\left(x-2021\right)-(x-2021)=0\)

\(\Leftrightarrow\left(x-2021\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-2021\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2021=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=1\\x=-1\end{matrix}\right.\)