Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)=\left(x+1\right)\left(x-2\right)\)
\(2x\left(x-2\right)-\left(x-2\right)^2=\left(x-2\right)\left[2x-\left(x-2\right)\right]=\left(x-2\right)\left(2x-x+2\right)=\left(x-2\right)\left(x+2\right)\)
\(4x^2-20xy+25y^2=\left(2x\right)^2-2.2x.5y+\left(5y\right)^2=\left(2x-5y\right)^2\)
\(x^2+3x-x-3=x\left(x+3\right)-\left(x+3\right)=\left(x-1\right)\left(x+3\right)\)
\(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
\(2y\left(x+2\right)-3x-6=2y\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(2y-3\right)\)
Ta có 4 x 2 – 25 y 2 = ( 2 x ) 2 – ( 5 y ) 2 = ( 2 x – 5 y ) ( 2 x + 5 y )
Đáp án cần chọn là: C
a.
$x^4-25x^3=0$
$\Leftrightarrow x^3(x-25)=0$
\(\Leftrightarrow \left[\begin{matrix} x^3=0\\ x-25=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=25\end{matrix}\right.\)
b.
$(x-5)^2-(3x-2)^2=0$
$\Leftrightarrow (x-5-3x+2)(x-5+3x-2)=0$
$\Leftrightarrow (-2x-3)(4x-7)=0$
\(\Leftrightarrow \left[\begin{matrix}
-2x-3=0\\
4x-7=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
x=\frac{-3}{2}\\
x=\frac{7}{4}\end{matrix}\right.\)
c.
$x^3-4x^2-9x+36=0$
$\Leftrightarrow x^2(x-4)-9(x-4)=0$
$\Leftrightarrow (x-4)(x^2-9)=0$
$\Leftrightarrow (x-4)(x-3)(x+3)=0$
\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ x-3=0\\ x+3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4\\ x=3\\ x=-3\end{matrix}\right.\)
d. ĐK: $x\neq 0$
$(-x^3+3x^2-4x):(\frac{-1}{2}x)=0$
$\Leftrightarrow x(-x^2+3x-4):(\frac{-1}{2}x)=0$
$\Leftrightarrow -2(-x^2+3x-4)=0$
$\Leftrightarrow x^2-3x+4=0$
$\Leftrightarrow (x-1,5)^2=-1,75< 0$ (vô lý)
Vậy pt vô nghiệm.
\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Lời giải:
$4x^2-2x-1=0$
$\Leftrightarrow [(2x)^2-2.2x.\frac{1}{2}+(\frac{1}{2})^2]-\frac{5}{4}=0$
$\Leftrightarrow (2x-\frac{1}{2})^2=\frac{5}{4}$
$\Rightarrow 2x-\frac{1}{2}=\pm \frac{\sqrt{5}}{2}$
$\Leftrightarrow 2x=\frac{1\pm \sqrt{5}}{2}$
$\Rightarrow x=\frac{1\pm \sqrt{5}}{4}$
$x^4-4x^2-32=0$
$\Leftrightarrow (x^2-2)^2-36=0$
$\Leftrightarrow (x^2-2-6)(x^2-2+6)=0$
$\Leftrightarrow (x^2-8)(x^2+4)=0$
Vì $x^2+4>0$ với mọi $x$ nên $x^2-8=0$
$\Leftrightarrow x=\pm 2\sqrt{2}$
a) Ta có: \(4x^2-2x-1=0\)
\(\Delta=\left(-2\right)^2-4\cdot4\cdot\left(-1\right)=4+16=20\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2-2\sqrt{5}}{8}=\dfrac{1-\sqrt{5}}{4}\\x_2=\dfrac{2+2\sqrt{5}}{8}=\dfrac{1+\sqrt{5}}{4}\end{matrix}\right.\)
b) Ta có: \(x^4-4x^2-32=0\)
\(\Leftrightarrow x^4-8x^2+4x^2-32=0\)
\(\Leftrightarrow x^2=8\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
\(a,5x\left(x-3\right)-x^2+9=0\)
\(5x\left(x-3\right)-\left(x^2-9\right)=0\)
\(5x\left(x-3\right)-\left(x-3\right)\left(x+3\right)=0\)
\(\left(x-3\right)\left(5x-x-3\right)=0\)
\(\left(x-3\right)\left(4x-3\right)=0\)
\(\left[{}\begin{matrix}x-3=0\\4x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\4x=3\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=3\\x=\frac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow x-3=0\) hoặc 4x-3=0
\(\Leftrightarrow\)x=3 hoặc x=\(\frac{3}{4}\)
Vậy ....
\(a,\Leftrightarrow\left(x+3\right)^2-4\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+3-4x+12\right)=0\\ \Leftrightarrow\left(x+3\right)\left(15-3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(b,=x^2\left(y-1\right)-\left(y-1\right)^2=\left(y-1\right)\left(x^2-y+1\right)\)
a, 2xy^2 ( x^3 -3xy - 4 )
b, x^2 - 4x - 4x +16
= x(x-4) - 4(x-4)
= (x-4) (x-4)
\(36-4x^2+20xy-25y^2=0\)
\(\Rightarrow36-\left(4x^2-20xy+25y^2\right)=0\)
\(\Rightarrow6^2-\left(2x-5y\right)^2=0\)
\(\Rightarrow\left(6-2x+5y\right)\left(6+2x-5y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-2x+5y=-6\\2x-5y=-6\end{cases}}\) Ko cần phải tìm x,y cụ thể đâu bạn nhé.