K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

\(2x^4-5x^3-27x^2+25x+50=0\)

\(\Leftrightarrow2x^4-4x^3-x^3+2x^2-25x^2+50x+25x^2-25x+50=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-x^2\left(x-2\right)-25x\left(x-5\right)+25\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-x^2-25x+25\right)=0\)

:D sorry mk ko bt phân tích 2x^3-x^2-25x+25 :D

8 tháng 1 2018

chịu

8 tháng 10 2016

b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48

=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)

=(x-1)(3x3+9x2-24x-48)

=3(x-1)(x3+3x2-8x-16)

14 tháng 7 2017

a) x4 - 10x3 - 15x2 + 20x + 4

= x4 + 2x3 - 12x3 - 24x2 + 9x2 + 18x + 2x + 4

= x3(x + 2) - 12x2(x + 2) + 9x(x + 2) + 2(x + 2)

= (x + 2)(x3 - 12x2 + 9x + 2)

b)

2x4 - 5x3 - 27x2 + 25x + 50

= 2x3(x - 2) - x2(x - 2) - 25x(x - 2) - 25(x - 2)

= (x - 2)(2x3 - x2 - 25x - 25)

14 tháng 7 2017

c)\(3x^4+6x^3-33x^2-24x+48\)

\(=3\left(x^4+2x^3-11x^2-8x+16\right)\)

\(=3\left(x^4-x^3-4x^2+3x^3-3x^2-12x-4x^2+4x+16\right)\)

\(=3\left(x^2\left(x^2-x-4\right)+3x\left(x^2-x-4\right)-4\left(x^2-x-4\right)\right)\)

\(=3\left(x^2+3x-4\right)\left(x^2-x-4\right)\)

\(=3\left(x^2-x+4x-4\right)\left(x^2-x-4\right)\)

\(=3\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2-x-4\right)\)

\(=3\left(x-1\right)\left(x+4\right)\left(x^2-x-4\right)\)

5 tháng 8 2018

a) 27x^3 –27x^2 +18x –4

= 27x^3 –9x^2–18x^2+6x + 12x –4

= 9x^2 (3x–1) – 6x (3x–1) +4(3x–1)

= (3x-1) (9x^2–6x+4)

b)2x^3–2x^2+5x+3

= 2x^3+x^2–2x^2–x+6+3

= x^2(2x+1)-x^2(2x+1)+3(2x+1)

= (2x+1) 3

c) 2x^4 + 5x^3+13x^2+25x+15 
=2x^3(x+1)+3x^2(x+1)+10x(x+1)+15(x+1) 
=(x+1)(x^2(2x+3)+5(2x+3)) 
=(x+1)(2x+3)(x^2+5)

a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x+25=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

b) Ta có: \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)

d) Ta có: \(x^3-x=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) Ta có: \(27x^3-27x^2+9x-1=1\)

\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)

\(\Leftrightarrow\left(3x-1\right)^3=1\)

\(\Leftrightarrow3x-1=1\)

\(\Leftrightarrow3x=2\)

hay \(x=\dfrac{2}{3}\)