Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)
Ta thấy x=0 không là nghiệm của PT
Xét \(x\ne0\)
Khi đó PT
<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)
Đặt \(2x+\frac{1}{x}=a\)
=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)
<=> \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)
<=> \(6a^3-44a^2-191a-45=0\)
Xin lỗi đến đây tớ ra nghiệm không đẹp
c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\) ĐKXĐ \(x\ne-3\)
<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)
<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)
<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)
<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)
\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ
NX \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)
\(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)
\(=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)=\(\frac{a^4+2a^3+2a^2+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)
\(=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\)=\(\left[\frac{a^2+a+1}{a\left(a+1\right)}\right]^2\)suy ra A=\(\frac{a^2+a+1}{a\left(a+1\right)}\)
=\(\frac{a\left(a+1\right)+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)
ap dung vao bai ta co =\(\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\)
=\(2011+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)= \(2011+\frac{1}{2}-\frac{1}{2013}=2011,499503\)
1/ Ta có : \(\frac{\left(x+2\right)+\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=\frac{1}{x-2}\)
=> \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}=\frac{1}{x-2}\)
=> \(\left(2x+1\right)\left(x-2\right)=\left(x-1\right)\left(x+2\right)\)
=> \(2x^2-3x-2=x^2+x-2\)
=> \(x^2-4x=0\)
=> \(x\left(x-4\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
2/ Ta có: \(\frac{x+3+2\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)
=> \(\frac{x+3+2x+2}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)
=> \(\frac{3x+5}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)
=> \(\left(x+1\right)\left(x+3\right).3=\left(3x+5\right)\left(x+2\right)\)
=> \(3x^2+12x+9=3x^2+11x+10\)
=> \(x=1\)