Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(\left(x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy pt có tập nghiệm là \(S=\left\{2;-13\right\}\)
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\dfrac{18\left(x+7-x-4\right)}{18\left(x+4\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}\)
\(18.3=\left(x+4\right)\left(x+7\right)\)
\(x^2+11x+28-54=0\)
\(x^2+11x-26=0\)
\(\left(x-2\right)\left(x+13\right)=0\)
\(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Theo đề x < 0 nên x = -13
Đk:\(x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Rightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy....
Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến
Bài này mk hơi làm tắt nha
Đặt \(A=\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+41}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3\left(x+5\right)\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
Nhân chéo ta được:
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x=26\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\left(koTM\right)\\x=-13\left(TM\right)\end{cases}}\)
Vậy nghiệm PT thỏa mãn là -13
1. Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath
1. Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath
a)
ĐKXĐ: x khác -4;-5;-6;-7
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+20}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{8}\\ \Rightarrow x^2+11x+28=24\\ \Leftrightarrow x^2+11x+4=0\)
ta có: \(\Delta=11^2-4.1.4=105>0\) nên phương trình có 2 nghiệm phân biệt.
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-11-\sqrt{105}}{2}\\x_2=\dfrac{-11+\sqrt{105}}{2}\end{matrix}\right.\)
a) Ta có: \(x^2-11x-26=0\)
nên a=1; b=-11; c=-26
Áp dụng hệ thức Viet, ta được:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)
và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)
\(\dfrac{1}{\left(x^2+13x+42\right)}=\dfrac{1}{\left(\left(x+7\right)\left(x+6\right)\right)}\)
\(\dfrac{1}{\left(x^2+11x+30\right)}=\dfrac{1}{\left(\left(x+5\right)\left(x+6\right)\right)}\)
\(\dfrac{1}{\left(x^2+9x+20\right)}=\dfrac{1}{\left(\left(x+5\right)\left(x+4\right)\right)}\)
Chuyển 1/18 sang ta sẽ có: \(\dfrac{1}{\left(\left(x+7\right)\left(x+6\right)\right)}+\dfrac{1}{\left(\left(x+5\right)\left(x+6\right)\right)}+\dfrac{1}{\left(\left(x+5\right)\left(x+4\right)\right)}-\dfrac{1}{18}=0\)
Mẫu số chung sẽ là \(18\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)\)
Quy đồng và rút gọn ta sẽ được biểu thức: \(\dfrac{-\left(x^2+11x-26\right)}{\left(18\left(x+4\right)\left(x+7\right)\right)}=0\)
Giải phương trình \(-x^2-11x+26\)
Ta sẽ có nghiệm là x = -13 và x = 2.