Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
a) x+1\(\in\)Ư(4)=\(\left\{\pm1;\pm2;\pm4\right\}\)
x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 0 | -2 | 1 | -3 | 3 | -5 |
b)(x+2)+3\(⋮\)x+2
3\(⋮\)x+2
x+2\(\in\)Ư(3)=\(\left\{\pm1;\pm3\right\}\)
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
mấy cái kia tương tự
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để phân số \(\dfrac{-4}{2x-1}\) là số nguyên thì \(-4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(-4\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;3;-1;5;-3\right\}\)
\(\Leftrightarrow x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{1;0\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{1;0\right\}\)
a) \(-\dfrac{3}{x-1}\in\) \(\mathbb{Z}\) khi x - 1 là ước của 3. Mà ước của 3 là -1; -3; 1; 3
Ta có bảng:
x - 3 | -3 | -1 | 1 | 3 |
x | 0 | 2 | 4 | 6 |
d) \(\dfrac{3x+7}{x-1}=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
Để giá trị của biểu thức là số nguyên thì x - 1 là ước của 10.
Làm tương tự như câu a.
Các ý còn lại giống phương pháp của câu a và d
\(a,3x-31=-40\Rightarrow3x=-9\Rightarrow x=-3\)
\(b,-3x+37=\left(-4\right)^2\Rightarrow-3x=-21\Rightarrow x=7\)
\(c,\left|2x+7\right|=5\)
\(\Rightarrow\left\{{}\begin{matrix}2x+7=5\Rightarrow x=-1\\2x+7=-5\Rightarrow x=-6\end{matrix}\right.\)
\(d,-x+21=15+2x\Rightarrow3x=6\Rightarrow x=2\)
a) Ta có: 3x-31=-40
\(\Leftrightarrow3x=-9\)
hay x=-3
Vậy: x=-3
b) Ta có: \(-3x+37=\left(-4\right)^2\)
\(\Leftrightarrow-3x+37=16\)
\(\Leftrightarrow-3x=16-37=-21\)
hay x=7
Vậy: x=7
Bài 1:
A = 3(x + 1)2 + 5
Ta có: (x + 1)2 \(\ge\) 0 Với mọi x
\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 3(x + 1)2 + 5 \(\ge\) 5 với mọi x
Hay A \(\ge\) 5
Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1
Vậy...
B = 2|x + y| + 3x2 - 10
Ta có: 2|x + y| \(\ge\) 0 với mọi x, y
3x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y
Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0
\(\Rightarrow\) x = y = 0
Vậy ...
C = 12(x - y)2 + x2 - 6
Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y
x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = y = 0
Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất
Bài 2:
Phần A ko rõ đầu bài!
B = 3 - (x + 1)2 - 3(x + 2y)2
Ta có: -(x + 1)2 \(\le\) 0 với mọi x
-3(x + 2y)2 \(\le\) 0 với mọi x, y
\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)2 \(\le\) 3 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0
\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)
Vậy ...
C = -12 - 3|x + 1| - 2(y - 1)2
Ta có: -3|x + 1| \(\le\) 0 với mọi x
-2(y - 1)2 \(\le\) 0 với mọi y
\(\Rightarrow\) -12 - 3|x + 1| - 2(y - 1)2 \(\le\) -12 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0
\(\Rightarrow\) x = -1; y = 1
Vậy ...
Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa
F = \(\dfrac{-5}{3}\) - 2x2
Ta có: -2x2 \(\le\) 0 với mọi x
\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy ...
Chúc bn học tốt!
a) x thuộc Z => x+1 thuộc Z
=> x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng
b) Ta có x+5=x+2+3
Để x+5 chia hết cho x+2 thì x+2+3 chia hết cho x+2
=> 3 chia hết cho x+2
x thuộc Z => x+2 thuộc Z => x+2 thuộc Ư (3)={-3;-1;1;3}
Ta có bảng
c) Ta có x-7=x-2-5
Để x-7 chia hết cho x-2 thì x-2-5 chia hết cho x-2
=> 5 chia hết cho x-2
Mà x thuộc Z => x-2 thuộc Z
=>x-2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
d) ta có 2x+5=2(x+1)+3
Để 2x+5 chia hết cho x+1 thì 2(x+1)+3 chia hết cho x+1
=> 3 chia hết cho x+1
x thuộc Z => x+1 thuộc Z => x+1 thuộc Ư (3)={-3;-1;1;3}
Ta có bảng
d) Ta có 3x-1=3(x+2)-7
Để 3x-1 chia hết x+2 => 3(x+2)-7 chia hết x+2
=> 7 chia hết cho x+2
x thuộc Z => x+2 thuộc Z
=> x+2 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng