Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
a) \(n+3\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(n-1+4\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
nên \(4\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta lập bảng sau:
\(n-1\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\)
\(n\) \(-3\) \(-1\) \(0\) \(2\) \(3\) \(5\)
Vậy....
a) Ta có: n + 3 chia hết cho n - 1
=> n - 1 + 4 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư (4)
=> n - 1 thuộc { 1; -1; 4; -4 }
=> n thuộc { 2; 0; 5; -3 }
b) Ta có: 2n - 1 chia hết cho n + 2
=> 2n + 4 - 5 chia hết cho n + 2
Mà 2n + 4 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư (5)
=> n + 2 thuộc { 1; -1; 5; -5 }
=> n thuộc { -1; -3; 3; -7 }
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
1.Với n=1 ,theo định lý Pytago ta có :a2+b2=c2
Giả sử đúng với n=k ,ta có : a2k+b2k < hoặc = c2k
Với n=k+1,ta có : a2(k+1) +b2(k+1)=
(a2k+b2k )(a2+b2)-a2k+b2k-a2+b2<c2k c2 = c2k+1
Với bất đăqngr thức đúng với n=k+1
Do đó ta có : a2n+b2n<hoặc = c2n ;n là số tự nhiên lớn hơn 0
2.Cơ bản mà chẳng cần phân tích gì
7(x-2004)^2=23-(y^2)
<=>
7(x-2004)^2+y^2=23
vế trái yrở thành tổng hai số không âm
|(x-2004)|<=1 vì 7.2^2=28>23
===
•x=2004=>loại vì y^2=23 không nguyên
•x=2003 ; 2005=>y^2=23-7=16
=>y=4
kl
x=2003&2005
y=4
2n - 1 ⋮ n + 3
=> 2n + 6 - 7 ⋮ n + 3
=> 2(n + 3) - 7 ⋮ n + 3
có 2(n+3) ⋮ n + 3
=> 7 ⋮ n + 3
=> n + 3 thuộc Ư(7)
=> ...
b, (x+1)(y-2) = -5
=> x + 1; y - 2 thuộc Ư(-5)
xét bảng :
x+1 | -1 | 1 | -5 | 5 |
y-2 | -5 | 5 | -1 | 1 |
x | -2 | 0 | -5 | 4 |
y | -3 | 7 | 1 | 3 |
2n-1\(⋮\)n+3
+)Theo bài ta có 2n-1\(⋮\)n+3(1)
+)Ta có n+3\(⋮\)n+3
=>2.(n+3)\(⋮\)n+3
=>2n+6\(⋮\)n+3(2)
Từ (1) và (2) suy ra (2n+6)-(2n-1)\(⋮\)n+3
=>2n+6-2n+1\(⋮\)n+3
=>7\(⋮\)n+3
=>n+3\(\in\)Ư(7)={-1;-7;1;7}
Ta có bảng:
n+3 | -1 | -7 | 1 | 7 |
n | -4\(\in\)Z | -10\(\in\)Z | -2\(\in\)Z | 4\(\in\)Z |
Vậy n\(\in\){-4;-10;-2;4}
b)(x+1).(y-2)=-5
=>-5\(⋮\)y-2
=>y-2\(\in\)Ư(-5)={-1;-5;1;5}
Ta có bảng:
y-2 | -1 | -5 | 1 | 5 |
x+1 | 5 | 1 | -5 | -1 |
y | 1 | -3 | 3 | 7 |
x | 4 | 0 | -6 | -2 |
Vậy cặp (y,x)\(\in\){(1;4);(-3:0);(3;6);(7;-2))
Chúc bn học tốt
I don't now
mik ko biết
sorry
......................
1)\(4n+3⋮n-2\)
\(\Leftrightarrow4n+3=4\left(n-2\right)+11\)
\(\Rightarrow4\left(n-2\right)⋮n-2\)\(\Rightarrow n-2⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n\in\left\{3;1;13;-9\right\}\)
2)\(xy+5x+y+10=0\)
\(\Leftrightarrow x\left(y+5\right)+y+5+5=0\)
\(\Leftrightarrow x\left(y+5\right)+\left(y+5\right)=-5\)
\(\Leftrightarrow\left(x+1\right).\left(y+5\right)=-5\)
x+1 | -1 | -5 | 1 | 5 |
y+5 | 5 | 1 | -5 | -1 |
x | -2 | -6 | 0 | 4 |
y | 0 | -4 | -10 | -6 |
3)
a x=3;y=2
b x=
viết cách giải ra nhé mik choa