Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
Đặt: \(k=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow k^3=\frac{xyz}{3.4.5}=\frac{1620}{60}=27\)
=> k = 3
Nên \(\frac{x}{3}=3\Rightarrow x=9\)
\(\frac{y}{4}=3\Rightarrow y=12\)
\(\frac{z}{5}=3\Rightarrow z=15\)
Vậy x = 9 , y = 12 , z = 15
a)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Leftrightarrow x=3k;y=4k;z=5k\)và \(xyz=1620\)
\(\Rightarrow3k.4k.5k=1620\Leftrightarrow60k^3=1620\)
\(\Rightarrow k=\sqrt[3]{1620:60}=3\)
\(\hept{\begin{cases}\frac{x}{3}=3\Rightarrow x=3.3=9\\\frac{y}{4}=3\Rightarrow y=3.4=12\\\frac{z}{5}=3\Rightarrow z=3.5=15\end{cases}}\)
Vậy \(x=9;y=12;z=15\)
b)
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{6}\Leftrightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{18}\) và \(x+y+z=334\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{18}=\frac{x+y+z}{10+15+18}=\frac{334}{43}\)
\(\hept{\begin{cases}\frac{x}{10}=\frac{334}{43}\Rightarrow x=\frac{334}{43}.10=\frac{3340}{43}\\\frac{y}{15}=\frac{334}{43}\Rightarrow y=\frac{334}{43}.15=\frac{5010}{43}\\\frac{z}{18}=\frac{334}{43}\Rightarrow z=\frac{334}{43}.18=\frac{6012}{43}\end{cases}}\)
Vậy \(x=\frac{3340}{43};y=\frac{5010}{43};z=\frac{6012}{43}\)
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
- COi lại đề mồ
\(\frac{x}{3}=\frac{y}{4}=\frac{x}{18}=\frac{y}{24}\)(Nhân cả 2 vế với \(\frac{1}{6}\))(1)
\(\frac{y}{6}=\frac{z}{5}=\frac{y}{24}=\frac{z}{20}\)(Nhân cả 2 vế với \(\frac{1}{4}\))(2)
Từ (1) và (2)=>\(\frac{x}{18}=\frac{y}{24}=\frac{z}{20}\)
Ábạn dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{20}\)=\(\frac{x+y-z}{18+24-20}=\frac{4}{22}\)=\(\frac{2}{11}\)
còn đâu bạn làm nốt nha!!!MIk cũng không pit đúng không nữa tại quên rồi chỉ nhiws thế này thôi