Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi chứng minh nhỏ hơn hoặc bằng 0 nhé
\(=-y^{2018}-\left(x^2-x+1\right)\)
\(=-y^{2018}-\left(x+1\right)^2\)
Vì \(\hept{\begin{cases}-y^{2018}\le0;\forall x,y\\-\left(x+1\right)^2\le0;\forall x,y\end{cases}}\)
\(\Rightarrow-y^{2018}-\left(x+1\right)^2\le0;\forall x,y\left(đpcm\right)\)
Ta có: \(\frac{x+2}{3}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2\left(x+2\right)}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2x+4}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{2x+4-\left(y-1\right)+z+5}{6-4+7}=\frac{2x+4-y+1+z+5}{6-4+7}=\frac{\left(2x-y+z\right)+\left(4+1+5\right)}{6-4+7}\)
\(=\frac{17+10}{9}=\frac{27}{9}=3\)
Suy ra: \(2x+4=6.3\Rightarrow2x=14\Rightarrow x=7\)
\(y-1=3.4\Rightarrow y=13\)
\(z+5=3.7\Rightarrow z=16\)
Vậy x = 7 ; y = 13; z = 16
Áp dụng tc của dãy tỉ số = nhau ta được :
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)
Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)
\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy ...
bạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))
\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)
Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)
Vậy \(x=1;y=-2;z=3\)
Ta có: \(\left|x-1\right|+\left|x-2020\right|=\left|x-1\right|+\left|2020-x\right|\ge\left|x-1+2020-x\right|=2019\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(2020-x\right)\ge0\)\(\Leftrightarrow1\le x\le2020\)
Vì \(\hept{\begin{cases}\left|x-30\right|\ge0\\\left|y-4\right|\ge0\\\left|z-1975\right|\ge0\end{cases}}\forall x,y,z\)\(\Rightarrow\left|x-1\right|+\left|x-30\right|+\left|y-4\right|+\left|z-1975\right|+\left|x-2020\right|\ge2019\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-30=0\\y-4=0\\z-1975=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=4\\z=1975\end{cases}}\)
So sánh \(x=30\)với điều kiện \(1\le x\le2020\)ta được x thoả mãn
Vậy \(x=30\); \(y=4\); \(z=1975\)
a, 3.2x+1-2=94
B, (3x-1)3=125
C, 2x+2x+1+...........+2x+99=2100-1
. là dấu nhân
MIK CẦN GẤP
HELP!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\hept{\begin{cases}x-\left(y+z\right)=\frac{-1}{12}\\y-\left(x+z\right)=\frac{-1}{2}\\z-\left(x+y\right)=\frac{-7}{12}\end{cases}}\)
\(\Leftrightarrow-\left(x+y+z\right)=\frac{-7}{6}\)
\(\Leftrightarrow\hept{\begin{cases}-\left(x+y\right)=z-\frac{7}{6}\\-\left(x+z\right)=y-\frac{7}{6}\\-\left(y+z\right)=x-\frac{7}{6}\end{cases}}\)
Thay vô tinh tiếp, đc chứ??