K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

Đặt \(k=\frac{x}{8}=\frac{y}{3}=\frac{z}{10}\)

Ta có: \(x=8k;y=3k;z=10k\)  (*)

Thay vào đẳng thức \(xy+yz+zx=206\) ta được:

  \(8k.3k+3k.10k+10k.8k=206\)

\(\Leftrightarrow24k^2+30k^2+80k^2=206\)

\(\Leftrightarrow24k^2+30k^2+80k^2=206\)

\(\Rightarrow k=\pm\sqrt{\frac{103}{67}}\)

Thay k vào (*) tính được x, y, z

30 tháng 11 2018

\(\left(xy\right):\left(yz\right)=\frac{2}{3}:0,6\Rightarrow\frac{x}{z}=\frac{10}{9}\)=> \(x=\frac{10}{9}z\Rightarrow\frac{10}{9}z.z=0,625\Rightarrow z^2=\frac{9}{16}\Rightarrow z=\pm\frac{3}{4}\)

\(\left(yz\right):\left(zx\right)=0,6:0,625\Rightarrow\frac{y}{x}=\frac{24}{25}\)

Với z=3/4 => x, y

Với z=-3/4 => x,y

Câu b làm tương tự nhé :)

13 tháng 9 2016

\(\Rightarrow\left(x.y.z\right)^2=\frac{-2}{5}.\frac{3}{4}.\frac{-3}{10}\)

\(\Rightarrow\left(x.y.z\right)^2=\frac{18}{200}=\frac{9}{100}\)

\(\Rightarrow x.y.z=\frac{3}{10}\)

\(\Rightarrow z=\frac{3}{-4}\)

\(\Rightarrow x=\frac{2}{5}\)

\(\Rightarrow y=-1\)

24 tháng 7 2017

ko hiểu đề cho lắm

a)Ta có:

\(\left\{{}\begin{matrix}x+y=\frac{1}{3}\\y+z=\frac{-1}{4}\\z+x=\frac{1}{5}\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{3}+\frac{-1}{4}+\frac{1}{5}\)

\(\Rightarrow2\left(x+y+z\right)=\frac{17}{60}\)

\(\Rightarrow x+y+z=\frac{17}{60}:2=\frac{17}{120}\)

\(\Rightarrow\left\{{}\begin{matrix}z=\frac{-23}{120}\\x=\frac{47}{120}\\y=\frac{-7}{120}\end{matrix}\right.\)

b)Ta có:

\(\left\{{}\begin{matrix}xy=\frac{3}{5}\\yz=\frac{4}{5}\\zx=\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow xyyzzx=\frac{3}{5}.\frac{4}{5}.\frac{3}{4}=\frac{9}{25}\)

\(\Rightarrow\left(xyz\right)^2=\frac{9}{25}\Rightarrow\left[{}\begin{matrix}xyz=\frac{3}{5}\\xyz=-\frac{3}{5}\end{matrix}\right.\)

TH1: \(xyz=\frac{3}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}z=1\\x=\frac{3}{4}\\y=\frac{4}{5}\end{matrix}\right.\)

TH2:

\(xyz=-\frac{3}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}z=-1\\x=-\frac{3}{4}\\y=-\frac{4}{5}\end{matrix}\right.\)

8 tháng 4 2015

x= 1

y=1

z=1

9 tháng 3 2018

x=1

y=1

z=1

AH
Akai Haruma
Giáo viên
2 tháng 3 2018

Lời giải:

Ta có:

\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)

\(A=\frac{xz}{xyz+xz+z}+\frac{y.xz}{yz.xz+y.xz+xz}+\frac{z}{zx+z+1}\)

\(A=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\) (thay \(xyz=1\) )

\(A=\frac{xz+1+z}{1+xz+z}=1\)