Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko vt lại đề
(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019
=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019
=> (z-1)(xy-y-x+1)=2019
=> (z-1)(z-1)(y-1)=2019
vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1
nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}
(x-1)(y-1)(z-1)= 673.3.1=2019
=> x-1=673=>x=674
=>y-1=3=>y=4
=> z-1 =1=>z=2
Vậy x=674,y=4,z=2
\(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)
\(=\frac{xy}{\left(x+z\right)+\left(y+z\right)}+\frac{yz}{\left(x+y\right)+\left(x+z\right)}+\frac{xz}{\left(x+y\right)+\left(y+z\right)}\)
\(\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{xz}{y+z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}."="\Leftrightarrow x=y=z=\frac{1}{3}\)
x = y = z = 0
đangg còn cả x = y = 4 nữa
quan trọng là cách làm kia