Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình k ghi lại đề nữa ta có
\(1\ge\dfrac{4^2}{x+24}+\dfrac{5^2}{y+16}+\dfrac{3^2}{z+4}\ge\dfrac{\left(4+5+3\right)^2}{x+y+z+24+16+4}=\dfrac{12^2}{x+y+z+44}\)
=>x+y+z+44>=12^2=144=> x+y+z=100
đặt x+y+z=a(a>=100)
\(x+y+z+\dfrac{1}{x+y+z}=a+\dfrac{1}{a}=\dfrac{a}{10000}+\dfrac{1}{a}+\dfrac{9999a}{10000}\ge\dfrac{2}{100}+\dfrac{9999a}{10000}\)
do a>=100 nên
\(a+\dfrac{1}{a}\ge\dfrac{2}{100}+\dfrac{9999}{100}=\dfrac{10001}{100}\) khi a= 100 hay x+y+z=100
Ta có: \(P=\frac{4}{x}+\frac{9}{y}+\frac{16}{z}=\frac{2^2}{x}+\frac{3^2}{y}+\frac{4^2}{z}\)
Áp dụng bất đẳng thức Swarchz cho 3 số:
\(\Rightarrow P\ge\frac{\left(2+3+4\right)^2}{x+y+z}=\frac{81}{x+y+z}\)
Thay \(x+y+z=6\Rightarrow P\ge\frac{81}{6}=\frac{27}{2}\)
\(\Rightarrow Min_P=\frac{27}{2}.\)Dấu "=" xảy ra khi \(x=y=z=2\).
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{4}{3};y=2;z=\frac{8}{3}\)
Gợi ý: áp dụng hệ quả của bunhia
dấu bằng khi 1/x=4/y=3/z