Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^{16}}{1}+\frac{y^{16}}{1}+\frac{z^{16}}{1}\ge\frac{\left(x^8+y^8+z^8\right)^2}{1+1+1}\ge\frac{\frac{\left(x^4+y^4+z^4\right)^2}{3}}{3}\ge\frac{\frac{\frac{\left(x^2+y^2+z^2\right)^2}{3}}{3}}{3}\ge\frac{\frac{\frac{\frac{\left(x+y+z\right)^2}{3}}{3}}{3}}{3}=3\)
Min P = 3 khi x =y =z =1
vì xyz=1 và x+y+z = 3
suy ra GTNN của xyz
x=y=z=1
suy ra GTNN của P=3
Ta có: \(P=\frac{4}{x}+\frac{9}{y}+\frac{16}{z}=\frac{2^2}{x}+\frac{3^2}{y}+\frac{4^2}{z}\)
Áp dụng bất đẳng thức Swarchz cho 3 số:
\(\Rightarrow P\ge\frac{\left(2+3+4\right)^2}{x+y+z}=\frac{81}{x+y+z}\)
Thay \(x+y+z=6\Rightarrow P\ge\frac{81}{6}=\frac{27}{2}\)
\(\Rightarrow Min_P=\frac{27}{2}.\)Dấu "=" xảy ra khi \(x=y=z=2\).
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{4}{3};y=2;z=\frac{8}{3}\)
Cho x, y, z >1 và x+y+z = xyz. tìm GTNN của B=\(\dfrac{y-2}{x^2}+\dfrac{z-2}{y^2}+\dfrac{x-2}{z^2}\)
Bạn không có cơ sở để ghi rằng \(P\geq \sum \frac{2(x-1)}{xz}-\sum \frac{1}{x}\) do $x,y,z$ có thể tồn tại số $\leq 1$