Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a)x/4=y/3=z/9
nên x/4=3y/9=4z/36
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{z-3y+4z}{4-9+36}=\frac{62}{31}=2\)
Do đó, x/4=2 nên x=4*2=8
y/3=2 nên x=2*3=6
z/9=2 nên z=9*2=18
b)Gọi x/12=y/9=z/5=k nên x=12k; y=9k; z=5k
=>x*y*z=12k*9k*5k=(12*9*5)*k3=540*k3
mà x*y*z=20 nên 540*k3=20
k3=20/540=1/27=(1/3)^3
=>k=1/3
=>x=12*1/3=4
y=9*1/3=3
z=5*1/3=5/3
c)x/5=y/7=z/3 nên x2/25=y2/49=z2/9
Áp dụng tc dãy tỉ số bằng nhau, ta được:
x2/25=y2/49=z2/9=\(\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Do đó, x2/25=9 nên x2=9*25=225=152=(-15)2
nên x=15 hoặc x=-15
y2/49=9 nên y2=9*49=441=212=(-21)2
nên y=21 hoặc y=-21
z2/9=9 nên z2=9*9=92 =(-9)2
nên z=9 hoặc z=-9
1) a) Ta có \(\left(x-2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
\(\left(z+4\right)^6\ge0\)
mà \(\left(x-2\right)^2+\left(y+3\right)^4+\left(z+4\right)^6=0\)
nên \(x-2=0\Rightarrow x=2\)
\(y+3=0\Rightarrow y=-3\)
\(z+4=0\Rightarrow z=-4\)
b) \(3x=2y\Rightarrow x=\frac{2y}{3}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow z=\frac{4y}{5}\)
Do đó \(x+y+z=-3,9\)
hey \(\frac{2y}{3}+\frac{4y}{5}+y=-3,9\)
giải tìm ra y thế vào lại để tìm x,z
2)
a)
\(-\frac{5}{4}-\frac{-7}{12}+\frac{-2}{3}+\frac{5}{6}-\frac{3}{2}=-\frac{15}{12}+\frac{7}{12}-\frac{8}{12}+\frac{10}{12}-\frac{18}{12}=\frac{-15+7-8+10-18}{12}\)
\(=-\frac{24}{12}=-2\)
b) \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
\(\Rightarrow S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\frac{1}{2}S=\frac{2^{100}-1}{2^{101}}\)
\(S=\frac{2^{100}-1}{2^{100}}\)
Ta có : \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+3\right)^4\ge0\forall y\)
\(\left(z+4\right)^2\ge0\forall z\)
Mà : ( x - 2 )2 + ( y + 3 )4 + ( z + 4 )6 = 0
Nên : pt <=> x - 2 = 0
y + 3 = 0
z + 4 = 0
<=> x = 2
y = -3
z = -4
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
b/
\(\dfrac{x+y-6}{z}=\dfrac{x+z+4}{y}=\dfrac{y+z+2}{x}=\dfrac{6}{x+y+z}\)
Đặt 0\(k=\dfrac{x+y-6}{z}=\dfrac{x+z+4}{y}=\dfrac{y+z+2}{x}=\dfrac{6}{x+y+z}\)
\(\Rightarrow k=\dfrac{\left(x+y-6\right)+\left(x+z+4\right)+\left(y+z+2\right)}{z+y+x}\)
\(\Rightarrow k=\dfrac{2x+2y+2z-6+4+2}{z+y+x}\)
\(\Rightarrow k=\dfrac{2\left(x+y+z\right)}{z+y+x}\)
\(\Rightarrow k=2\) (*)
Từ (*)
\(\Rightarrow\dfrac{x+y-6}{z}=2\Rightarrow x+y-6=2z\)
\(\Rightarrow\dfrac{x+z+4}{y}=2\Rightarrow x+z+4=2y\)
\(\Rightarrow\dfrac{y+z+2}{x}=2\Rightarrow y+z+2=2x\)
\(\Rightarrow\dfrac{6}{x+y+z}=2\Rightarrow\dfrac{6}{2}=x+y+z\)
\(\Rightarrow x+y+z=3\)
Thay vào biểu thức x+y+z = 3
\(\Rightarrow\dfrac{3-z-6}{z}=\dfrac{3-y+4}{y}=\dfrac{3-x+2}{x}=2\)
\(\Rightarrow\dfrac{-3-z}{z}=\dfrac{7-y}{y}=\dfrac{5-x}{x}=2\)
\(\text{Ta có :}\dfrac{-3-z}{z}=2\)
\(\Rightarrow-3-z=2z\)
\(\Rightarrow-3=3z\)
\(\Rightarrow z=-1\)
*) \(\dfrac{7-y}{y}=2\)
\(\Rightarrow7-y=2y\)
\(\Rightarrow7=3y\)
\(\Rightarrow y=\dfrac{7}{3}\)
*)\(\dfrac{5-x}{x}=2\)
\(\Rightarrow5-x=2x\)
\(\Rightarrow5=3x\)
\(\Rightarrow x=\dfrac{5}{3}\)
Vậy x = 5/3 ; y = 7/3 ; z = -1
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
suy ra:
\(\frac{x^2}{25}=9\Rightarrow x^2=225\Rightarrow x=15\)hoặc \(x=-15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=441\Rightarrow y=21\)hoặc \(y=-21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=81\Rightarrow z=9\)hoặc \(z=-9\)
Bạn cộng cả ba cái lại sẽ đc
2(x+y+z) = -7/6 + 1/4 + 1/12
=> x+y+z = ..
=> z = x+y+z - (x+y) = .. - 7/ 6
tương tự x,y