K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

a)x/4=y/3=z/9

nên x/4=3y/9=4z/36

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{z-3y+4z}{4-9+36}=\frac{62}{31}=2\)

Do đó, x/4=2 nên x=4*2=8

         y/3=2 nên x=2*3=6

         z/9=2 nên z=9*2=18

b)Gọi x/12=y/9=z/5=k nên x=12k; y=9k; z=5k

=>x*y*z=12k*9k*5k=(12*9*5)*k3=540*k3

mà x*y*z=20 nên 540*k3=20

k3=20/540=1/27=(1/3)^3

=>k=1/3

=>x=12*1/3=4

    y=9*1/3=3

    z=5*1/3=5/3

c)x/5=y/7=z/3 nên x2/25=y2/49=z2/9

Áp dụng tc dãy tỉ số bằng nhau, ta được:

 x2/25=y2/49=z2/9=\(\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Do đó, x2/25=9 nên x2=9*25=225=152=(-15)2

                       nên x=15 hoặc x=-15

         y2/49=9 nên y2=9*49=441=212=(-21)2

                       nên y=21 hoặc y=-21

         z2/9=9 nên z2=9*9=92 =(-9)2

                       nên z=9 hoặc z=-9

12 tháng 6 2018

Đặt  \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)

Mà  \(x^2+y^2+z^2=200\)

\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)

\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)

\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)

\(\Leftrightarrow kak^2.50=200\)

\(\Leftrightarrow kak^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)

+) Với  \(kak=2\)thì  \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)

+) Với  \(kak=-2\)thì  \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)

Vậy ...

12 tháng 6 2018

Đặt  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Ta có :  \(xyz=-30\)

\(\Leftrightarrow2k\times3k\times5k=-30\)

\(\Leftrightarrow30k^3=-30\)

\(\Leftrightarrow k^3=-1\)

\(\Leftrightarrow k=-1\)

Thay vào ta được :

\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)

Vậy ...

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)

24 tháng 8 2018

Bạn xem link này nhé !     https://olm.vn/hoi-dap/question/1060930.html

24 tháng 8 2018

ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

ADTCDTSBN

có: \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}\)

=>...

bn tự tính