Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow30x^2+20y^2+15z^2=12x^2+12y^2+12z^2.\)
\(\Leftrightarrow18x^2+8y^2+3z^2=0\)(1)
\(x^2\ge0\Rightarrow18x^2\ge0\)
\(y^2\ge0\Rightarrow8y^2\ge0\)
\(z^2\ge0\Rightarrow3z^2\ge0\)
=> (1) = 0 khi \(18x^2=8y^2=3z^2=0\Rightarrow x=y=z=0\)
(6x2+4y2+3z2)/12 = (x2+y2+z2)/5
30x2+20y2+15z2=12x2+12y2+12z2
18x2+8y2+3z2=0
=> x=y=z=0
vì x2;y2;z2 > hoặc = 0
\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)
\(\Leftrightarrow\frac{x^2}{2}-\frac{x^2}{5}+\frac{y^2}{3}-\frac{y^2}{5}+\frac{z^2}{4}-\frac{z^2}{5}=0\)
\(\Leftrightarrow x^2\left(\frac{1}{2}-\frac{1}{5}\right)+y^2\left(\frac{1}{3}-\frac{1}{5}\right)+z^2\left(\frac{1}{4}-\frac{1}{5}\right)=0\)
\(\Leftrightarrow x=y=z=0\)
Đặt \(\frac{x^2}{2}=\frac{y^2}{3}=\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}=k\)(k >= 0)
=> \(x^2=2k;y^2=3k;z^2=4k;x^2+y^2+z^2=5k\)
=> \(x^2+y^2+z^2=2k+3k+4k=9k=5k\)
=> k = 0
=> x = y = z = 0
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
a) Ta có : x/2=y/3; y/5=z/4 =>
= x/10=y/15 ; y/15= z/12
=> x/10= y/15=z/12
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)
+) Vì x/10 =(-7) => x=(-70)
+) Vì y/15 =(-7) => y=(-105)
+) Vì z/12 =(-7) => z=(-84)
NHẤN ĐÚNG NHA BẠN !
b)
Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7
Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7
= 2.x/6 = 3.y/12 = z/7
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7
=186/11
Từ đó tính được x,y,z nha
NHẤN ĐÚNG NHA BẠN
\(\frac{6x^2+4y^2+3z^2}{12}=\frac{x^2+y^2+z^2}{5}\)
\(30x^2+20y^2+15z^2=12x^2+12y^2+12z^2\)
\(18x^2+8y^2+3z^2=0\)
\(18x^2\ge0\) \(8y^2\ge0\) \(3z^2\ge0\)
Nên
\(18x^2+8y^2+3z^2\ge0\)
Vậy
\(18x^2+8y^2+3z^2=0\) Khi và chỉ khi \(18x^2=0\) \(8y^2=0\) \(3z^2=0\)
Vậy \(x=y=z=0\)