K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

8908,7890,7890

19 tháng 12 2021

Answer:

\(3xy-2y=x^2+5\)

\(\Rightarrow y\left(3x-2\right)=x^2+5\) (1)

Mà x và y nguyên \(\Rightarrow x^2+5⋮3x-2\)

\(\Rightarrow9\left(x^2+5\right)⋮3x-2\)

\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)

\(\Rightarrow49⋮3x-2\)

\(\Rightarrow3x-2\in\left\{\pm49;\pm7;\pm1\right\}\)

\(\Rightarrow3x\in\left\{51;9;3;-5;1;-47\right\}\)

\(\Rightarrow x\in\left\{1;3;7\right\}\)

Trường hợp 1: Với \(x=1\) ta thay vào (1)

\(\Rightarrow y=6\)

Trường hợp 2: Với \(x=3\) ta thay vào (1)

\(\Rightarrow y=2\)

Trường hợp 3: Với \(x=7\)ta thay vào (1)

\(\Rightarrow y=6\)

3 tháng 1 2019

\( (2x+5y+1).(2^{|x|}+y+ x^2 +x)=105\)

Vì 105 là số lẻ nên 2x+5y+1 và 2|x|+y+x2+x cũng là số lẻ.

Có: 2x+5y+1 là số lẻ. Mà 2x+1 là số lẻ

\(\Rightarrow\)5y là số chẵn

\(\Rightarrow\)y là số chắn

Có 2|x|+y+x2+x là só lẻ. Mà x2+x=x(x+1) là tích 2 số tự nhiên liên tiếp nên là số chắn, y cũng là số chẵn

\(\Rightarrow\)2|x| là số lẻ

\(\Rightarrow\)x=0

Thay x=0 vào biểu thức ta có: 

\(\left(2.0+5y+1\right)\left(2^{\left|0\right|}+y+0^2+0\right)=105\)

\(\Leftrightarrow\left(0+5y+1\right)\left(1+y+0\right)=105\)

\(\Leftrightarrow\left(5y+1\right)\left(1+y\right)=105\)

\(\Leftrightarrow5y+5y^2+1+y=105\)

\(\Leftrightarrow5y^2+6y+1=105\)

\(\Leftrightarrow5y^2+6y-104=0\)

\(\Leftrightarrow5y^2-20y+26y-104=0\)

\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)

\(\Leftrightarrow\left(y-4\right)\left(5y+26\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\5y+26=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=\frac{-26}{5}\end{cases}}}\)

Mà \(x;y\in Z\Rightarrow y=4\)

Vậy x=0;y=4(tmyc)

1 tháng 12 2019

b) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(\Leftrightarrow\frac{12x-8y}{4^2}=\frac{6z-12x}{3^2}=\frac{8y-6z}{2^2}=\frac{12x-8y+6z-12x+8y-6z}{4^2+3^2+2^2}=0\)(tính chất dãy tỉ số bằng nhau)

=> \(\hept{\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{cases}}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(\text{đpcm}\right)\)

1 tháng 12 2019

Mày làm ngu vl

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.

12 tháng 1 2020

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\)   \(\forall x,y\)

mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)  (đề bài ) \(\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)

\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)

Rút gọn biểu thức

\(m+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)

=> \(m=x^2+11xy-y^2\)

Thay x,y, vừa tìm được vào biểu thức đã được rút gọn ta tính được m 

12 tháng 1 2020

Đây là bài hướng dẫn, có gì thắc mắc hãy hỏi lại!!