Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(x^2+\dfrac{y^2}{4}+4-xy+4x-2y\right)+\dfrac{3}{4}\left(y^2-4y+4\right)+1011\)
\(=\left(x-\dfrac{y}{2}+2\right)^2+\dfrac{3}{4}\left(y-2\right)^2+1011\ge1011\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-1;2\right)\)
a) Ta có: \(B=x^2+4y^2+4x-4y\)
\(=\left(x^2+4x+4\right)+\left(4y^2-4y+1\right)-5\)
\(=\left(x+2\right)^2+\left(2y-1\right)^2-5\ge-5\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(-2;\dfrac{1}{2}\right)\)
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
Ta có: \(\frac{4^x}{2^{x+y}}=8=>2^{2x}=2^3.2^{x+y}=>2^{2x}=2^{3+x+y}\)
\(=>2x=3+x+y=>x=3+y\)(1)
\(\frac{9^{x+y}}{3^{5y}}=243=>3^{3\left(x+y\right)}=3^5.3^{5y}\)
\(=>3^{3x+3y}=3^{5+5y}\)
=>3x + 3y = 5 + 5y
3x - 5 = 2y (2)
Thay (1) vào (2), có:
3.(3+y) - 5 = 2y
9 + 3y - 5= 2y
y = -4
=> x= 3 + -4 = -1
Vậy xy = -1 . (-4) = 4