K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2013\right|+\left|x-2014\right|+\left|x-2016\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2016-x\right|\)

\(\ge x-2013+0+2016-x=3\)

Lại có: \(\left|y-2015\right|\ge0\forall y\)

\(\Rightarrow VT=\left|x-2013\right|+\left|x-2014\right|+\left|x-2016\right|+\left|y-2015\right|\ge3=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2016\le0\\y-2015=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2016\\y=2015\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2014\\y=2015\end{matrix}\right.\)

1 tháng 1 2016

tim a

 

 

18 tháng 11 2021

tatata

14 tháng 12 2016

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(C=\left|x-2013\right|+\left|x-2014\right|\)

\(=\left|x-2013\right|+\left|2014-x\right|\)

\(\ge\left|x-2013+2014-x\right|=1\)

Dấu "=" khi \(2013\le x\le2014\)

Vậy \(Min_C=1\) khi \(2013\le x\le2014\)

25 tháng 12 2015

có phải làm thế này ko

A=Ix+2014I+Ix+2015I+2016=Ix+2014I+I-x+2015I+2016>= Ix+2014-x-2015I+2016

=I-1I+2016=1+2016=>A>=1

5 tháng 8 2016

(x-1)+(x-2)=3

   x-1+x-2=3

        2x-3=3

            2x=6

              x=3

5 tháng 8 2016

Đúng rồi! Cảm ơn

10 tháng 1 2018

Vì |x-2010| ≧ 0 với mọi x

    |x-2012| ≧ 0 với mọi x

   |x-2014| ≧ 0 với mọix

Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0

hay A ≧ 0

Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)

Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}

29 tháng 3 2019

Từ đầu đến A>= 0 là đúng nhưng dưới là sai nhé bạn!

23 tháng 9 2020

                                                          Bài giải

a, \(\left|x+3\right|+\left|y-1\right|=0\)

Mà \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall x\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }1\right)\)

b, \(\left|x+5\right|+\left|y+1\right|\le0\)

Mà \(\hept{\begin{cases}\left|x+5\right|\ge0\forall x\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\text{ }\left|x+5\right|+\left|y+1\right|=0\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)

Vậy \(\left(x\text{ ; }y\right)=\left(-5\text{ ; }-1\right)\)