Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sua lai bai cua minh
Neu \(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)
Vay \(25=8\left(x-2017\right)^2+y^2\\ =>25=8+y^2\\ =>y^2=17\left(loai\right)\)(do x;y \(\in N\))
Vay \(x=2017;y=5\)
Ta co
\(25-y^2=8\left(x-2017\right)^2\\ =>25=8\left(x-2017\right)^2+y^2\)
Do
\(8\left(x-2017\right)^2\le25\\ =>\left(x-2017\right)^2\le\frac{25}{8}\)
\(=>\left(x-2017\right)^2\in\left\{0;1\right\}\)
Neu
\(\left(x-2017\right)^2=0\\ x-2017=0\\ x=2017\)
Vay:
\(25=8\left(x-2017\right)^2+y^2\\ =>25=y^2\\ =>y=5\)
Neu
\(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)
Vay:
\(25=8\left(x-2017\right)^2+y^2\\ =>25=1+y^2\\ =>y^2=24\)(loai do x;y \(\in N\))
Vay x=2017 ; y=5
a) 2y+1.3x=12y=3y.22y
<=> 2y+1.3x=3y.22y <=> 3x-y=22y-y-1 <=> 3x-y=2y-1
Nếu x-y và y-1 khác 0 thì 2 vế 1 số là lẻ, 1 số là chẵn => ko có giá trị nào.
=> x-y=y-1=0 => x=y=1
\(8\left|x-2017\right|=25-y^{2\text{}}\)
\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)
Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)
Vì \(8\left(x-2009\right)^2\) chẵn nên \(25-y^2\) chẵn
Mà \(25\) lẻ nên \(y^2\) lẻ
Và \(25-y^2=8\left(x-2009\right)^2\ge0\Leftrightarrow y^2\le25\)
\(\Leftrightarrow y^2\in\left\{1;9;25\right\}\Leftrightarrow y\in\left\{1;3;5\right\}\left(y\in N\right)\)
\(\forall y=1\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\left(loại\right)\\ \forall y=3\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\left(loại\right)\\ \forall y=5\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\Leftrightarrow x=2009\left(nhận\right)\)
Vậy \(\left(x;y\right)=\left(2009;5\right)\)
Không tìm được đâu nhá
Vì muốn tìm 2 ẩn
Phải có hai pt
Hoc tot