K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

x = 2 và y = 1

Duyệt đi!

10 tháng 2 2016

x=2 ;y= 1  mình nhanh nhất

\(x^3+3x=x^2y+2y+5\)              \(\left(1\right)\)

\(\Leftrightarrow x^2y+2y=x^3+3x-5\)

\(\Leftrightarrow\left(x^2+2\right)y=x^3+3x-5\)

\(\Leftrightarrow y=\frac{x^3+3x-5}{x^2+2}=\frac{x^3+2x+x-5}{x^2+2}\)

\(=\frac{x\left(x^2+2\right)+\left(x-5\right)}{x^2+2}=\frac{x\left(x^2+2\right)}{x^2+2}+\frac{x-5}{x^2+2}\)

\(=x+\frac{x-5}{x^2+2}\)

Mà \(x,y\in Z\)

\(\Rightarrow\frac{x-5}{x^2+2}\in Z\)

\(\Rightarrow x-5⋮x^2+2\)

\(\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\)

\(\Rightarrow x^2-25⋮x^2+2\)

\(\Rightarrow x^2+2-27⋮x^2+2\)

\(\Rightarrow27⋮x^2+2\)

\(\Rightarrow\left(x^2+2\right)\inƯ\left(27\right)\)

Mà \(Ư\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)

Nhưng \(x^2+2\ge2\forall x\)

\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)

Lập bảng giá trị :

\(x^2+2\)\(3\)\(9\)\(27\)
\(x^2\)\(1\)\(7\)\(25\)
\(x\)\(\pm1\)\(\sqrt{7}\)\(\pm5\)

Mà \(x\in Z\)

\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\)        \(\left(2\right)\)

Thay \(\left(2\right)\)vào   \(\left(1\right)\)ta có :

+) Với \(x=-1\Rightarrow y=-3\)    ( thõa mãn )

+) Với \(x=1\Rightarrow y=-\frac{1}{3}\)   ( loại )

+) Với \(x=-5\Rightarrow y=-\frac{145}{27}\)   ( loại )

+) Với \(x=5\Rightarrow y=5\)  ( thõa mãn )

Vậy các số nguyên \(\left(x,y\right)\)cần tìm là : \(\left(-1;-3\right)\) ;       \(\left(5;5\right)\)

1 tháng 2 2019

Có nhiều cách để làm bài này nhé!

Áp dụng bất đẳng thức $x^2+y^2\geq 2xy$ nên ta có $x^2+y^2+xy \geq 3xy$
Mà $x^2+y^2+xy=x^2y^2 \geq 0$ nên suy ra $x^2y^2+3xy\leq 0 \iff -3\leq xy \leq 0$
Vì $x,y$ nguyên nên $xy$ nguyên, vậy nên $xy \in \left \{ -3,-2,-1,0\right \}$
Trường hợp $xy=-3 $ ta tìm được các nghiệm $(-1,3),(3,-1),(-3,1),(1,-3)$
Trường hợp $xy=-2$ ta tìm được các nghiệm $(-1,2),(2,-1),(1,-2),(-2,1)$
Trường hợp $xy=-1$ ta tìm được các nghiệm $(-1,1),(1,-1)$
Trường hợp $xy=0$ ta tìm được nghiệm $(0,0)$
Thử lại thì thấy chỉ có các nghiệm $(0,0),(1,-1),(-1,1)$ thỏa mãn và đó là các nghiệm nguyên cần tìm

1 tháng 2 2019

PT ban đầu tương đương
$x^2(y^2-1)-yx-y^2=0$
Xét $\Delta = 4y^4-3y^2$
=> $\sqrt{\Delta} = y\sqrt{4y^2-3}$
Nếu y=0 thì x=0
Xét TH y khác 0
Pt nhận nghiệm nguyên nên $sqrt{\Delta}$ nguyên
mà y nguyên rồi nên $4y^2-3$ phải là số chính phương
Đặt $4y^2-3=k^2$
Tới đây suy ra được y=1 hoặc y=-1
Thay vào pt ban đầu tìm được x tương ứng.
Vậy pt có 3 nghiệm (x;y)=(0;0);(-1;1);(1;-1)

6 tháng 12 2017

\(5x^2+6x-4xy-2y+2+y^2=0\)

\(\Leftrightarrow4x^2+x^2+2x+4x-4xy-2y+1+1+y^2=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+\left(x^2+2x+1\right)+1=0\)

\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y+1\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.\left(-1\right)-y+1=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2-y+1=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-y=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

Vậy \(x=-1\)\(y=-1\)