Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào số mũ chắc chắn chúng ta biết ko thể bé hơn ko đc
Nên : đề bài phải là Lớn hơn hoặc bằng ko .
Ta có : \(\left(2x-5\right)^{2014}\ge0\forall x\in R\)
\(\left(3x-4\right)^{2016}\ge0\forall x\in R\)
Nên : \(\left(2x-5\right)^{2014}+\left(3x-4\right)^{2016}\ge0\forall x\in R\) (đpcm)
Vì \(\hept{\begin{cases}\left(2x-5\right)^{2014}\ge0\\\left(3y+4\right)^{2016}\ge0\end{cases}\forall x,y\Rightarrow\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}\ge0}\)
Mà \(\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}\le0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)^{2014}=0\\\left(3y+4\right)^{2016}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}}\)
\(\left(\frac{2x-3}{4}\right)^{2014}+\left(\frac{3y+4}{5}\right)^{2016}=0\)
Có: \(\left(\frac{2x-3}{4}\right)^{2014}\ge0;\left(\frac{3y+4}{5}\right)^{2016}\ge0\)
Mà theo bài ra: \(\left(\frac{2x-3}{4}\right)^{2014}+\left(\frac{3y+4}{5}\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{2x-3}{4}=0\\\frac{3y+4}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-3=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=3\\3y=-4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}\)
Vậy: \(\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2x-3}{4}=0\\\frac{3y+4}{5}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Vì \(\left(2x-1\right)^{2016}\ge0;\left(3y+6\right)^{2014}\ge0;\left(z-1\right)^{2012}\ge0\)
\(\Rightarrow\left(2x-1\right)^{2016}+\left(3y+6\right)^{2014}+\left(z-1\right)^{2012}\ge0\)
Để \(\left(2x-1\right)^{2016}+\left(3y+6\right)^{2014}+\left(z-1\right)^{2012}=0\)\(\Leftrightarrow\left(2x-1\right)^{2016}=0;\left(3y+6\right)^{2014}=0;\left(z-1\right)^{2012}=0\)
\(\Leftrightarrow2x-1=0;3y+6=0;z-1=0\)
\(\Rightarrow x=\dfrac{1}{2};y=-2;z=1\)
\(\Rightarrow4x+y-3z=4.\dfrac{1}{2}+\left(-2\right)-3.1=2-2-3=-3\)
Vì \(\left(2x-5\right)^{2016}\ge0\forall x;\left(3y+4\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\ge0\)
Mà đề lại cho \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\le0\)
Nên \(\hept{\begin{cases}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2020}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Vậy ..........
mình gợi ý nha
ta thấy biểu thức đầu \(\ge\)0
biểu thức 2\(\ge0\)
\(\Rightarrow\)biểu thức 3 =0
để vế trái =0
rồi lần lượt tìm xyz
có |2x-5| luôn \(\ge0\forall x\in Q\)
cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)
=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)
=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\)
vậy \(x=\frac{2}{5};y=\frac{1}{3}\)
em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!
3 câu còn lại cũng tương tự
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)
Ta có :
\(\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}\le0\)
Mà \(\left\{{}\begin{matrix}\left(2x-5\right)^{2014}\ge0\\\left(3y+4\right)^{2016}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2014}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy ..
Giải:
Theo đề ra, ta có:
\(\left(2x-5\right)^{2014}+\left(3y+4\right)^{2016}\le0\)
Mà: \(\left(2x-5\right)^{2014}\ge0\) và \(\left(3y+4\right)^{2016}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-5\right)^{2014}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy ...
Chúc bạn học tốt!